The monodromy conjecture for zeta functions associated to ideals in dimension two
Lise Van Proeyen[1]; Willem Veys[1]
- [1] K.U. Leuven Departement Wiskunde Celestijnenlaan 200B 3001 Leuven (Belgium)
Annales de l’institut Fourier (2010)
- Volume: 60, Issue: 4, page 1347-1362
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topVan Proeyen, Lise, and Veys, Willem. "The monodromy conjecture for zeta functions associated to ideals in dimension two." Annales de l’institut Fourier 60.4 (2010): 1347-1362. <http://eudml.org/doc/116306>.
@article{VanProeyen2010,
abstract = {The monodromy conjecture states that every pole of the topological (or related) zeta function induces an eigenvalue of monodromy. This conjecture has already been studied a lot. However in full generality it is proven only for zeta functions associated to polynomials in two variables.In this article we work with zeta functions associated to an ideal. First we work in arbitrary dimension and obtain a formula (like the one of A’Campo) to compute the “Verdier monodromy” eigenvalues associated to an ideal. Afterwards we prove a generalized monodromy conjecture for arbitrary ideals in two variables.},
affiliation = {K.U. Leuven Departement Wiskunde Celestijnenlaan 200B 3001 Leuven (Belgium); K.U. Leuven Departement Wiskunde Celestijnenlaan 200B 3001 Leuven (Belgium)},
author = {Van Proeyen, Lise, Veys, Willem},
journal = {Annales de l’institut Fourier},
keywords = {Zeta functions for ideals; Verdier monodromy; monodromy conjecture; topological zeta functions for ideals},
language = {eng},
number = {4},
pages = {1347-1362},
publisher = {Association des Annales de l’institut Fourier},
title = {The monodromy conjecture for zeta functions associated to ideals in dimension two},
url = {http://eudml.org/doc/116306},
volume = {60},
year = {2010},
}
TY - JOUR
AU - Van Proeyen, Lise
AU - Veys, Willem
TI - The monodromy conjecture for zeta functions associated to ideals in dimension two
JO - Annales de l’institut Fourier
PY - 2010
PB - Association des Annales de l’institut Fourier
VL - 60
IS - 4
SP - 1347
EP - 1362
AB - The monodromy conjecture states that every pole of the topological (or related) zeta function induces an eigenvalue of monodromy. This conjecture has already been studied a lot. However in full generality it is proven only for zeta functions associated to polynomials in two variables.In this article we work with zeta functions associated to an ideal. First we work in arbitrary dimension and obtain a formula (like the one of A’Campo) to compute the “Verdier monodromy” eigenvalues associated to an ideal. Afterwards we prove a generalized monodromy conjecture for arbitrary ideals in two variables.
LA - eng
KW - Zeta functions for ideals; Verdier monodromy; monodromy conjecture; topological zeta functions for ideals
UR - http://eudml.org/doc/116306
ER -
References
top- D. Abramovich, K. Karu, K. Matsuki, J. Włodarczyk, Torification and factorization of birational maps, J. Amer. Math. Soc. 15 (2002), 531-572 Zbl1032.14003MR1896232
- N. A’Campo, La fonction zêta d’une monodromie, Comment. Math. Helv. 50 (1975), 233-248 Zbl0333.14008MR371889
- E. Artal-Bartolo, P. Cassou-Noguès, I. Luengo, A. Melle-Hernandez, Monodromy conjecture for some surface singularities, Ann. Scient. Ec. Norm. Sup. 35 (2002), 605-640 Zbl1020.32025MR1981174
- E. Artal-Bartolo, P. Cassou-Noguès, I. Luengo, A. Melle-Hernandez, Quasi-ordinary power series and their zeta functions, Mem. Amer. Math. Soc. 178 (2005) Zbl1095.14005MR2172403
- N. Budur, M. Mustaţǎ, M. Saito, Bernstein-Sato polynomials of arbitrary varieties, Compos. Math. 142 (2006), 779-797 Zbl1112.32014MR2231202
- P. Deligne, Le formalisme des cycles évanescents, SGA7 XIII and XIV, Lect. Notes in Math. 340 (1973), 82-115 and 116–164, Springer Berlin Zbl0266.14008
- J. Denef, Degree of local zeta functions and monodromy, Compos. Math. 89 (1994), 207-216 Zbl0932.11073MR1255694
- J. Denef, F. Loeser, Caractéristiques d’Euler-Poincaré, fonctions zêta locales, et modifications analytiques, J. Amer. Math. Soc. 5 (1992), 705-720 Zbl0777.32017MR1151541
- J. Denef, F. Loeser, Motivic Igusa zeta functions, Journal of Algebraic Geometry 7 (1998), 505-537 Zbl0943.14010MR1618144
- A. Dimca, Sheaves in topology, (2004), Springer-Verlag, Berlin Heidelberg Zbl1043.14003MR2050072
- D. Eisenbud, J. Harris, The Geometry of Schemes, (2000), Springer-Verlag, New York Zbl0960.14002MR1730819
- W. Fulton, Intersection Theory, (1984), Springer-Verlag, Berlin Heidelberg Zbl0541.14005MR732620
- A. Gyoja, Bernstein-Sato’s polynomial for several analytic functions, J. Math. Kyoto Univ. 33 (1993), 399-411 Zbl0797.32007MR1231750
- R. Hartshorne, Algebraic Geometry, (1977), Springer-Verlag, New York Zbl0367.14001MR463157
- J. Howald, M. Mustaţǎ, C. Yuen, On Igusa zeta functions of monomial ideals, Proc. Amer. Math. Soc. 135 (2007), 3425-3433 Zbl1140.14003MR2336554
- J. Igusa, An introduction to the theory of local zeta functions, Advanced Mathematics (2000), AMS/IP Studies Zbl0959.11047
- A. Lemahieu, W. Veys, On monodromy for a class of surfaces, C. R. Acad. Sci. Paris 345/11 (2007), 633-638 Zbl1140.14013MR2371481
- A. Lemahieu, W. Veys, Zeta functions and monodromy for surfaces that are general for a toric idealistic cluster, Intern. Math. Res. Notices (2008) Zbl1161.14017MR2471295
- F. Loeser, Fonctions d’Igusa -adiques et polynômes de Bernstein, Amer. J. Math. 110 (1988), 1-21 Zbl0644.12007MR926736
- F. Loeser, Fonctions d’Igusa -adiques, polynômes de Bernstein, et polyèdres de Newton, J. Reine Angew. Math. 412 (1990), 75-96 Zbl0713.11083MR1079002
- B. Malgrange, Polynôme de Bernstein-Sato et cohomologie évanescente, Astérisque 101–102 (1983), 243-267 Zbl0528.32007MR737934
- B. Rodrigues, On the Monodromy Conjecture for curves on normal surfaces, Math. Proc. of the Cambridge Philosophical Society 136 (2004), 313-324 Zbl1063.14045MR2040577
- B. Rodrigues, W. Veys, Holomorphy of Igusa’s and topological zeta functions for homogeneous polynomials, Pacific J. Math. 201 (2001), 429-441 Zbl1054.11061MR1875902
- C. Sabbah, Proximité évanescante, I. La structure polaire d’un -module, Compos. Math. 62 (1987), 283-328 Zbl0622.32012MR901394
- L. Van Proeyen, W. Veys, Poles of the topological zeta function associated to an ideal in dimension two, Math. Z. 260 (2008), 615-627 Zbl1146.14010MR2434472
- J.-L. Verdier, Spécialisation de faisceaux et monodromie modérée, Astérisque 101–102 (1983), 332-364 Zbl0532.14008MR737938
- W. Veys, Poles of Igusa’s local zeta function and monodromy, Bull. Soc. Math. France 121 (1993), 545-598 Zbl0812.14014MR1254752
- W. Veys, Vanishing of principal value integrals on surfaces, J. Reine Angew. Math. 598 (2006), 139-158 Zbl1106.14010MR2270570
- W. Veys, W.A. Zuniga-Galindo, Zeta functions for analytic mappings, log-principalization of ideals, and Newton polyhedra, Trans. Amer. Math. Soc. 360 (2008), 2205-2227 Zbl1222.11141MR2366980
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.