Monodromy conjecture for some surface singularities

E. Artal Bartolo; P. Cassou-Noguès; I. Luengo; A. Melle Hernández

Annales scientifiques de l'École Normale Supérieure (2002)

  • Volume: 35, Issue: 4, page 605-640
  • ISSN: 0012-9593

How to cite

top

Artal Bartolo, E., et al. "Monodromy conjecture for some surface singularities." Annales scientifiques de l'École Normale Supérieure 35.4 (2002): 605-640. <http://eudml.org/doc/82584>.

@article{ArtalBartolo2002,
author = {Artal Bartolo, E., Cassou-Noguès, P., Luengo, I., Melle Hernández, A.},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {topological zeta function; monodromy conjecture; local Denef-Loeser zeta function; superisolated singularity of hypersurface; rational arrangements of plane curves},
language = {eng},
number = {4},
pages = {605-640},
publisher = {Elsevier},
title = {Monodromy conjecture for some surface singularities},
url = {http://eudml.org/doc/82584},
volume = {35},
year = {2002},
}

TY - JOUR
AU - Artal Bartolo, E.
AU - Cassou-Noguès, P.
AU - Luengo, I.
AU - Melle Hernández, A.
TI - Monodromy conjecture for some surface singularities
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2002
PB - Elsevier
VL - 35
IS - 4
SP - 605
EP - 640
LA - eng
KW - topological zeta function; monodromy conjecture; local Denef-Loeser zeta function; superisolated singularity of hypersurface; rational arrangements of plane curves
UR - http://eudml.org/doc/82584
ER -

References

top
  1. [1] A'Campo N., La fonction zeta d'une monodromie, Comment. Math. Helv.50 (1975) 233-248. Zbl0333.14008MR371889
  2. [2] Artal Bartolo E., Forme de Jordan de la monodromie des singularités superisolées de surfaces, Mem. Amer. Math. Soc.109 (525) (1994). Zbl0918.32017MR1204839
  3. [3] Artal Bartolo E., Sur les couples de Zariski, J. Algebraic Geom.3 (2) (1994) 223-247. Zbl0823.14013MR1257321
  4. [4] Artal Bartolo E., Cassou-Noguès Pi., Luengo I., Melle-Hernández A., Denef–Loeser zeta function is not a topological invariant, J. London Math. Soc. (2001), to appear. Zbl1020.32023
  5. [5] Artal Bartolo E., Luengo I., Melle-Hernández A., On a conjecture of W. Veys, Math. Ann.317 (2) (2000) 325-327. Zbl0969.14030MR1764241
  6. [6] Denef J., Report on Igusa's local zeta function, Astérisque, 201–203, 1991, Exp. No. 741, Séminaire Bourbaki, Vol. 1990/91, 1992, 359–386. Zbl0749.11054MR1157848
  7. [7] Denef J., Loeser F., Caractéristiques d'Euler–Poincaré, fonctions zêta locales et modifications analytiques, J. Amer. Math. Soc.5 (4) (1992) 705-720. Zbl0777.32017MR1151541
  8. [8] Denef J., Loeser F., Motivic Igusa zeta functions, J. Algebraic Geom.7 (3) (1998) 505-537. Zbl0943.14010MR1618144
  9. [9] Denef J., Loeser F., Germs of arcs on singular algebraic varieties and motivic integration, Invent. Math.135 (1) (1999) 201-232. Zbl0928.14004MR1664700
  10. [10] Denef J., Loeser F., Geometry on arc spaces of algebraic varieties, to appear in Proceedings of the Third European Congress of Mathematics, Barcelona 2000, p. 22, math.AG/0006050. Zbl1079.14003MR1905328
  11. [11] Dimca A., On the connectivity of a complex affine hyperserfaces, Topology29 (1990) 511-514. Zbl0771.57010MR1071372
  12. [12] Dimca A., Némethi A., On the monodromy of complex polynomials, Duke Math. J.108 (2) (2001) 199-209. Zbl1020.32022MR1833390
  13. [13] Eisenbud D., Neumann W.D., Three-Dimensional Link Theory and Invariance of Plane Curve Singularities, Annals of Mathematics Studies, 110, Princeton University Press, Princeton, NJ, 1985. Zbl0628.57002MR817982
  14. [14] Esnault H., Fibre de Milnor d'un cône sur une courbe plane singulière, Invent. Math.68 (3) (1982) 477-496. Zbl0475.14018MR669426
  15. [15] Gurjar R., Parameswaran A., Open surfaces with non-positive euler characteristic, Compositio Math.99 (1995) 213-229. Zbl0849.14013MR1361739
  16. [16] de Jong A.J., Steenbrink J., Proof of a conjecture of W. Veys, Indag. Math. (N.S.)6 (1) (1995) 99-104. Zbl0857.14019MR1324440
  17. [17] Kashiwara H., Fonctions rationnelles de type (0,1) sur le plan projectif complexe, Osaka J. Math.24 (3) (1987) 521-577. Zbl0668.14017MR923877
  18. [18] Kizuka T., Rational functions of C∗-type on the two-dimensional complex projective space, Tohoku Math. J. (2)38 (1) (1986) 123-178. Zbl0577.14021
  19. [19] Kojima H., On Veys' conjecture, Indag. Math. (N.S.)10 (4) (1999) 537-538. Zbl1039.14012MR1820550
  20. [20] Libgober A., Alexander polynomial of plane algebraic curves and cyclic multiple planes, Duke Math. J.49 (4) (1982) 833-851. Zbl0524.14026MR683005
  21. [21] Loeser F., Fonctions d'Igusa p-adiques et polynômes de Bernstein, Amer. J. Math.110 (1) (1988) 1-21. Zbl0644.12007MR926736
  22. [22] Loeser F., Fonctions d'Igusa p-adiques, polynômes de Bernstein, et polyèdres de Newton, J. Reine Angew. Math.412 (1990) 75-96. Zbl0713.11083MR1079002
  23. [23] Loeser F., Vaquié M., Le polynôme d'Alexander d'une courbe plane projective, Topology29 (2) (1990) 163-173. Zbl0743.14013MR1056267
  24. [24] Looijenga E., Motivic measures, Sèminaire Bourbaki, exposé 874, to appear in Asterisque, 2000, p. 25, math.AG/0006220. Zbl0996.14011MR1886763
  25. [25] Luengo I., The μ-constant stratum is not smooth, Invent. Math.90 (1) (1987) 139-152. Zbl0627.32018
  26. [26] Rodrigues B., Veys W., Holomorphy of Igusa's and topological zeta functions for homogeneous polynomials, Pacific J. Math., to appear. Zbl1054.11061MR1875902
  27. [27] Siersma D., Variation mappings on singularities with a 1-dimensional critical locus, Topology30 (3) (1991) 445-469. Zbl0746.32014MR1113689
  28. [28] Stevens J., On the μ-constant stratum and the V-filtration: an example, Math. Z.201 (1) (1989) 139-144. Zbl0649.32016
  29. [29] Veys W., Poles of Igusa's local zeta function and monodromy, Bull. Soc. Math. France121 (4) (1993) 545-598. Zbl0812.14014MR1254752
  30. [30] Veys W., Determination of the poles of the topological zeta function for curves, Manuscripta Math.87 (4) (1995) 435-448. Zbl0851.14012MR1344599
  31. [31] Veys W., Zeta functions for curves and log canonical models, Proc. London Math. Soc. (3)74 (2) (1997) 360-378. Zbl0872.32022MR1425327
  32. [32] Veys W., Structure of rational open surfaces with non-positive Euler characteristic, Math. Ann.312 (1998) 527-548. Zbl0913.14009MR1654753
  33. [33] Veys W., Zeta functions and ‘Konsevitch invariants’ on singular varities, Canad. J. Math.53 (4) (2001) 834-856. Zbl1073.14501
  34. [34] Yoshihara H., On plane rational curves, Proc. Japan Acad. Ser. A Math. Sci.55 (4) (1979) 152-155. Zbl0432.14019MR533711

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.