Path formulation for multiparameter -equivariant bifurcation problems
Jacques-Élie Furter[1]; Angela Maria Sitta[2]
- [1] Brunel University Department of Mathematical Sciences Uxbridge UB8 3PH (United Kingdom)
- [2] Universidade Estadual Paulista - UNESP Departamento de Matemática - IBILCE Campus de São José do Rio Preto - SP (Brazil)
Annales de l’institut Fourier (2010)
- Volume: 60, Issue: 4, page 1363-1400
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topFurter, Jacques-Élie, and Sitta, Angela Maria. "Path formulation for multiparameter $\mathbb{D}_3$-equivariant bifurcation problems." Annales de l’institut Fourier 60.4 (2010): 1363-1400. <http://eudml.org/doc/116307>.
@article{Furter2010,
abstract = {We implement a singularity theory approach, the path formulation, to classify $\mathbb\{D\}_3$-equivariant bifurcation problems of corank 2, with one or two distinguished parameters, and their perturbations. The bifurcation diagrams are identified with sections over paths in the parameter space of a $\mathbb\{D\}_3$-miniversal unfolding $F_\{\!0\}$ of their cores. Equivalence between paths is given by diffeomorphisms liftable over the projection from the zero-set of $F_\{\!0\}$ onto its unfolding parameter space. We apply our results to degenerate bifurcation of period-$3$ subharmonics in reversible systems, in particular in the 1:1-resonance.},
affiliation = {Brunel University Department of Mathematical Sciences Uxbridge UB8 3PH (United Kingdom); Universidade Estadual Paulista - UNESP Departamento de Matemática - IBILCE Campus de São José do Rio Preto - SP (Brazil)},
author = {Furter, Jacques-Élie, Sitta, Angela Maria},
journal = {Annales de l’institut Fourier},
keywords = {Equivariant bifurcation; degenerate bifurcation; path formulation; singularity theory; 1:1-resonance; reversible systems; subharmonic bifurcation; equivariant bifurcation},
language = {eng},
number = {4},
pages = {1363-1400},
publisher = {Association des Annales de l’institut Fourier},
title = {Path formulation for multiparameter $\mathbb\{D\}_3$-equivariant bifurcation problems},
url = {http://eudml.org/doc/116307},
volume = {60},
year = {2010},
}
TY - JOUR
AU - Furter, Jacques-Élie
AU - Sitta, Angela Maria
TI - Path formulation for multiparameter $\mathbb{D}_3$-equivariant bifurcation problems
JO - Annales de l’institut Fourier
PY - 2010
PB - Association des Annales de l’institut Fourier
VL - 60
IS - 4
SP - 1363
EP - 1400
AB - We implement a singularity theory approach, the path formulation, to classify $\mathbb{D}_3$-equivariant bifurcation problems of corank 2, with one or two distinguished parameters, and their perturbations. The bifurcation diagrams are identified with sections over paths in the parameter space of a $\mathbb{D}_3$-miniversal unfolding $F_{\!0}$ of their cores. Equivalence between paths is given by diffeomorphisms liftable over the projection from the zero-set of $F_{\!0}$ onto its unfolding parameter space. We apply our results to degenerate bifurcation of period-$3$ subharmonics in reversible systems, in particular in the 1:1-resonance.
LA - eng
KW - Equivariant bifurcation; degenerate bifurcation; path formulation; singularity theory; 1:1-resonance; reversible systems; subharmonic bifurcation; equivariant bifurcation
UR - http://eudml.org/doc/116307
ER -
References
top- V I Arnold, Wavefront evolution and equivariant Morse lemma, Comm. Pure. App. Math. 29 (1976), 557-582 Zbl0343.58003MR436200
- J M Ball, D G Schaeffer, Bifurcation and stability of homogeneous equilibrium configurations of an elastic body under dead-load tractions, Math. Proc. Camb. Phil. Soc. 94 (1983), 315-339 Zbl0568.73057MR715037
- Thomas J. Bridges, Jacques E. Furter, Singularity theory and equivariant symplectic maps, 1558 (1993), Springer-Verlag, Berlin Zbl0799.58009MR1290781
- J. W. Bruce, Functions on discriminants, J. London Math. Soc. (2) 30 (1984), 551-567 Zbl0605.58011MR810963
- J. W. Bruce, A. A. du Plessis, C. T. C. Wall, Determinacy and unipotency, Invent. Math. 88 (1987), 521-554 Zbl0596.58005MR884799
- Ernesto Buzano, Giuseppe Geymonat, Tim Poston, Post-buckling behavior of a nonlinearly hyperelastic thin rod with cross-section invariant under the dihedral group , Arch. Rational Mech. Anal. 89 (1985), 307-388 Zbl0568.73048MR792535
- Maria-Cristina Ciocci, Generalized Lyapunov-Schmidt reduction method and normal forms for the study of bifurcations of periodic points in families of reversible diffeomorphisms, J. Difference Equ. Appl. 10 (2004), 621-649 Zbl1055.37059MR2064813
- Maria-Cristina Ciocci, Subharmonic branching at a reversible resonance, J. Difference Equ. Appl. 11 (2005), 1119-1135 Zbl1085.37045MR2183010
- João Carlos Ferreira Costa, Angela Maria Sitta, Path formulation for -equivariant bifurcation problems, Real and complex singularities (2007), 127-141, Birkhäuser, Basel Zbl1128.58020MR2280136
- James Damon, The unfolding and determinacy theorems for subgroups of and , Mem. Amer. Math. Soc. 50 (1984) Zbl0545.58010MR748971
- James Damon, Deformations of sections of singularities and Gorenstein surface singularities, Amer. J. Math. 109 (1987), 695-721 Zbl0628.14003MR900036
- James Damon, On the legacy of free divisors: discriminants and Morse-type singularities, Amer. J. Math. 120 (1998), 453-492 Zbl0910.32038MR1623404
- Ana Paula S. Dias, Ana Rodrigues, Secondary bifurcations in systems with all-to-all coupling. II, Dyn. Syst. 21 (2006), 439-463 Zbl1118.34033MR2273688
- J. E. Furter, Geometric path formulation for bifurcation problems, J. Natur. Geom. 12 (1997) Zbl0908.34030MR1456087
- J-E. Furter, A. M. Sitta, I. Stewart, Algebraic path formulation for equivariant bifurcation problems, Mathematical Proceedings of the Cambridge Philosophical Society 124 (1998), 275-304 Zbl0920.58018MR1631115
- Terence Gaffney, New methods in the classification theory of bifurcation problems, Multiparameter bifurcation theory (Arcata, Calif., 1985) 56 (1986), 97-116, Amer. Math. Soc., Providence, RI Zbl0625.58016MR855086
- Karin Gatermann, Computer algebra methods for equivariant dynamical systems, 1728 (2000), Springer-Verlag, Berlin Zbl0944.65131MR1755001
- Karin Gatermann, Reiner Lauterbach, Automatic classification of normal forms, Nonlinear Anal. 34 (1998), 157-190 Zbl0947.34023MR1635741
- Jean-Jacques Gervais, Bifurcations of subharmonic solutions in reversible systems, J. Differential Equations 75 (1988), 28-42 Zbl0664.34051MR957006
- M. Golubitsky, D. Schaeffer, A theory for imperfect bifurcation via singularity theory, Comm. Pure Appl. Math. 32 (1979), 21-98 Zbl0409.58007MR508917
- Martin Golubitsky, David Chillingworth, Bifurcation and planar pattern formation for a liquid crystal, Bifurcation, symmetry and patterns (Porto, 2000) (2003), 55-66, Birkhäuser, Basel Zbl1187.82132MR2014355
- Martin Golubitsky, Mark Roberts, A classification of degenerate Hopf bifurcations with symmetry, J. Differential Equations 69 (1987), 216-264 Zbl0635.34036MR899161
- Martin Golubitsky, David Schaeffer, Bifurcations with symmetry including applications to the Bénard problem, Comm. Pure Appl. Math. 35 (1982), 81-111 Zbl0492.58012MR637496
- Martin Golubitsky, Ian Stewart, David G. Schaeffer, Singularities and groups in bifurcation theory. Vol. II, 69 (1988), Springer-Verlag, New York Zbl0691.58003MR950168
- Ali Lari-Lavassani, Yung-Chen Lu, Equivariant multiparameter bifurcation via singularity theory, J. Dynam. Differential Equations 5 (1993), 189-218 Zbl0778.58014MR1223447
- E. J. N. Looijenga, Isolated singular points on complete intersections, 77 (1984), Cambridge University Press, Cambridge Zbl0552.14002MR747303
- Jean Martinet, Déploiements versels des applications différentiables et classification des applications stables, Singularités d’applications différentiables (Sém., Plans-sur-Bex, 1975) (1976), 1-44. Lecture Notes in Math., Vol. 535, Springer, Berlin Zbl0362.58004MR649264
- John N. Mather, Stability of mappings. III. Finitely determined mapgerms, Inst. Hautes Études Sci. Publ. Math. (1968), 279-308 Zbl0159.25001MR275459
- David Mond, Ciclos Evanescentes para las applicaciones Analíticas, (1990)
- David Mond, James Montaldi, Deformations of maps on complete intersections, Damon’s -equivalence and bifurcations, Singularities (Lille, 1991) 201 (1994), 263-284, Cambridge Univ. Press, Cambridge Zbl0847.58007MR1295079
- James Montaldi, The path formulation of bifurcation theory, Dynamics, bifurcation and symmetry (Cargèse, 1993) 437 (1994), 259-278, Kluwer Acad. Publ., Dordrecht Zbl0811.58015MR1305382
- J. H. Rieger, Versal topological stratification and the bifurcation geometry of map-germs of the plane, Math. Proc. Cambridge Philos. Soc. 107 (1990), 127-147 Zbl0696.58009MR1021879
- J. H. Rieger, -unimodal map-germs into the plane, Hokkaido Math. J. 33 (2004), 47-64 Zbl1152.58314MR2034807
- J. H. Rieger, M. A. S. Ruas, Classification of -simple germs from to , Compositio Math. 79 (1991), 99-108 Zbl0724.58008MR1112281
- Mark Roberts, Characterisations of finitely determined equivariant map germs, Math. Ann. 275 (1986), 583-597 Zbl0582.58003MR859332
- Mark Roberts, A note on coherent -sheaves, Math. Ann. 275 (1986), 573-582 Zbl0579.32013MR859331
- Kyoji Saito, Theory of logarithmic differential forms and logarithmic vector fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27 (1980), 265-291 Zbl0496.32007MR586450
- Bernard Tessier, The hunting of invariants in the geometry of the discriminant, Real and Complex Singularities, Oslo 1976 (1977), 565-677, Sijthoff and Noordhoff, Alphen aan den Rijn Zbl0388.32010MR568901
- A. Vanderbauwhede, Bifurcation of subharmonic solutions in time-reversible systems, Z. Angew. Math. Phys. 37 (1986), 455-478 Zbl0603.58013MR854464
- A. Vanderbauwhede, Subharmonic branching in reversible systems, SIAM J.Math.Anal. 21 (1990), 954-979 Zbl0707.34038MR1052881
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.