Page 1

Displaying 1 – 2 of 2

Showing per page

Normal forms of analytic perturbations of quasihomogeneous vector fields: Rigidity, invariant analytic sets and exponentially small approximation

Eric Lombardi, Laurent Stolovitch (2010)

Annales scientifiques de l'École Normale Supérieure

In this article, we study germs of holomorphic vector fields which are “higher order” perturbations of a quasihomogeneous vector field in a neighborhood of the origin of n , fixed point of the vector fields. We define a “Diophantine condition” on the quasihomogeneous initial part S which ensures that if such a perturbation of S is formally conjugate to S then it is also holomorphically conjugate to it. We study the normal form problem relatively to S . We give a condition on S that ensures that there...

Path formulation for multiparameter 𝔻 3 -equivariant bifurcation problems

Jacques-Élie Furter, Angela Maria Sitta (2010)

Annales de l’institut Fourier

We implement a singularity theory approach, the path formulation, to classify 𝔻 3 -equivariant bifurcation problems of corank 2, with one or two distinguished parameters, and their perturbations. The bifurcation diagrams are identified with sections over paths in the parameter space of a 𝔻 3 -miniversal unfolding F 0 of their cores. Equivalence between paths is given by diffeomorphisms liftable over the projection from the zero-set of F 0 onto its unfolding parameter space. We apply our results to degenerate...

Currently displaying 1 – 2 of 2

Page 1