Codimension two transcendental submanifolds of projective space
Wojciech Kucharz[1]; Santiago R. Simanca[2]
- [1] Jagiellonian University Institute of Mathematics Lojasiewicza 6 30-348 Krakow (Poland)
- [2] University of New Mexico Department of Mathematics & Statistics Albuquerque, NM 87131 (USA)
Annales de l’institut Fourier (2010)
- Volume: 60, Issue: 4, page 1479-1488
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topKucharz, Wojciech, and Simanca, Santiago R.. "Codimension two transcendental submanifolds of projective space." Annales de l’institut Fourier 60.4 (2010): 1479-1488. <http://eudml.org/doc/116310>.
@article{Kucharz2010,
abstract = {We provide a simple characterization of codimension two submanifolds of $\{\mathbb\{P\}\}^n(\{\mathbb\{R\}\})$ that are of algebraic type, and use this criterion to provide examples of transcendental submanifolds when $n\ge 6$. If the codimension two submanifold is a nonsingular algebraic subset of $\{\mathbb\{P\}\}^n(\{\mathbb\{R\}\})$ whose Zariski closure in $\{\mathbb\{P\}\}^n(\{\mathbb\{C\}\})$ is a nonsingular complex algebraic set, then it must be an algebraic complete intersection in $\{\mathbb\{P\}\}^n(\{\mathbb\{R\}\})$.},
affiliation = {Jagiellonian University Institute of Mathematics Lojasiewicza 6 30-348 Krakow (Poland); University of New Mexico Department of Mathematics & Statistics Albuquerque, NM 87131 (USA)},
author = {Kucharz, Wojciech, Simanca, Santiago R.},
journal = {Annales de l’institut Fourier},
keywords = {Smooth manifold; algebraic set; isotopy; complete intersection; vector bundle; smooth manifold},
language = {eng},
number = {4},
pages = {1479-1488},
publisher = {Association des Annales de l’institut Fourier},
title = {Codimension two transcendental submanifolds of projective space},
url = {http://eudml.org/doc/116310},
volume = {60},
year = {2010},
}
TY - JOUR
AU - Kucharz, Wojciech
AU - Simanca, Santiago R.
TI - Codimension two transcendental submanifolds of projective space
JO - Annales de l’institut Fourier
PY - 2010
PB - Association des Annales de l’institut Fourier
VL - 60
IS - 4
SP - 1479
EP - 1488
AB - We provide a simple characterization of codimension two submanifolds of ${\mathbb{P}}^n({\mathbb{R}})$ that are of algebraic type, and use this criterion to provide examples of transcendental submanifolds when $n\ge 6$. If the codimension two submanifold is a nonsingular algebraic subset of ${\mathbb{P}}^n({\mathbb{R}})$ whose Zariski closure in ${\mathbb{P}}^n({\mathbb{C}})$ is a nonsingular complex algebraic set, then it must be an algebraic complete intersection in ${\mathbb{P}}^n({\mathbb{R}})$.
LA - eng
KW - Smooth manifold; algebraic set; isotopy; complete intersection; vector bundle; smooth manifold
UR - http://eudml.org/doc/116310
ER -
References
top- S. Akbulut, H. King, Transcendental submanifolds of , Comment. Math. Helv. 68 (1993), 308-318 Zbl0806.57017MR1214234
- Selman Akbulut, Henry King, Transcendental submanifolds of , Comment. Math. Helv. 80 (2005), 427-432 Zbl1071.57026MR2142249
- J. Bochnak, M. Buchner, W. Kucharz, Erratum: “Vector bundles over real algebraic varieties” [-Theory 3 (1989), no. 3, p. 271–298; MR1040403 (91b:14075)], -Theory 4 (1990) Zbl0761.14020MR1040403
- Jacek Bochnak, Michel Coste, Marie-Françoise Roy, Real algebraic geometry, 36 (1998), Springer-Verlag, Berlin Zbl0912.14023MR1659509
- James F. Davis, Paul Kirk, Lecture notes in algebraic topology, 35 (2001), American Mathematical Society, Providence, RI Zbl1018.55001MR1841974
- Robin Hartshorne, Varieties of small codimension in projective space, Bull. Amer. Math. Soc. 80 (1974), 1017-1032 Zbl0304.14005MR384816
- Heisuke Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II, Ann. of Math. (2) 79 (1964), p. 109–203; ibid. (2) 79 (1964), 205-326 Zbl0122.38603MR199184
- Dale Husemoller, Fibre bundles, 20 (1994), Springer-Verlag, New York Zbl0307.55015MR1249482
- Henry C. King, Approximating submanifolds of real projective space by varieties, Topology 15 (1976), 81-85 Zbl0316.57015MR396572
- Wojciech Kucharz, Homology classes of real algebraic sets, Ann. Inst. Fourier (Grenoble) 58 (2008), 989-1022 Zbl1153.14035MR2427517
- Wojciech Kucharz, Transcendental submanifolds of projective space, Comment. Math. Helv. 84 (2009), 127-133 Zbl1209.57023MR2466077
- John W. Milnor, Topology from the differentiable viewpoint, (1997), Princeton University Press, Princeton, NJ Zbl1025.57002MR1487640
- John W. Milnor, James D. Stasheff, Characteristic classes, (1974), Princeton University Press, Princeton, N. J. Zbl0298.57008MR440554
- John Nash, Real algebraic manifolds, Ann. of Math. (2) 56 (1952), 405-421 Zbl0048.38501MR50928
- Norman Steenrod, The Topology of Fibre Bundles, (1951), Princeton University Press, Princeton, N. J. Zbl0054.07103MR39258
- A. Tognoli, Su una congettura di Nash, Ann. Scuola Norm. Sup. Pisa (3) 27 (1973), 167-185 Zbl0263.57011MR396571
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.