Codimension two transcendental submanifolds of projective space

Wojciech Kucharz[1]; Santiago R. Simanca[2]

  • [1] Jagiellonian University Institute of Mathematics Lojasiewicza 6 30-348 Krakow (Poland)
  • [2] University of New Mexico Department of Mathematics & Statistics Albuquerque, NM 87131 (USA)

Annales de l’institut Fourier (2010)

  • Volume: 60, Issue: 4, page 1479-1488
  • ISSN: 0373-0956

Abstract

top
We provide a simple characterization of codimension two submanifolds of n ( ) that are of algebraic type, and use this criterion to provide examples of transcendental submanifolds when n 6 . If the codimension two submanifold is a nonsingular algebraic subset of n ( ) whose Zariski closure in n ( ) is a nonsingular complex algebraic set, then it must be an algebraic complete intersection in n ( ) .

How to cite

top

Kucharz, Wojciech, and Simanca, Santiago R.. "Codimension two transcendental submanifolds of projective space." Annales de l’institut Fourier 60.4 (2010): 1479-1488. <http://eudml.org/doc/116310>.

@article{Kucharz2010,
abstract = {We provide a simple characterization of codimension two submanifolds of $\{\mathbb\{P\}\}^n(\{\mathbb\{R\}\})$ that are of algebraic type, and use this criterion to provide examples of transcendental submanifolds when $n\ge 6$. If the codimension two submanifold is a nonsingular algebraic subset of $\{\mathbb\{P\}\}^n(\{\mathbb\{R\}\})$ whose Zariski closure in $\{\mathbb\{P\}\}^n(\{\mathbb\{C\}\})$ is a nonsingular complex algebraic set, then it must be an algebraic complete intersection in $\{\mathbb\{P\}\}^n(\{\mathbb\{R\}\})$.},
affiliation = {Jagiellonian University Institute of Mathematics Lojasiewicza 6 30-348 Krakow (Poland); University of New Mexico Department of Mathematics & Statistics Albuquerque, NM 87131 (USA)},
author = {Kucharz, Wojciech, Simanca, Santiago R.},
journal = {Annales de l’institut Fourier},
keywords = {Smooth manifold; algebraic set; isotopy; complete intersection; vector bundle; smooth manifold},
language = {eng},
number = {4},
pages = {1479-1488},
publisher = {Association des Annales de l’institut Fourier},
title = {Codimension two transcendental submanifolds of projective space},
url = {http://eudml.org/doc/116310},
volume = {60},
year = {2010},
}

TY - JOUR
AU - Kucharz, Wojciech
AU - Simanca, Santiago R.
TI - Codimension two transcendental submanifolds of projective space
JO - Annales de l’institut Fourier
PY - 2010
PB - Association des Annales de l’institut Fourier
VL - 60
IS - 4
SP - 1479
EP - 1488
AB - We provide a simple characterization of codimension two submanifolds of ${\mathbb{P}}^n({\mathbb{R}})$ that are of algebraic type, and use this criterion to provide examples of transcendental submanifolds when $n\ge 6$. If the codimension two submanifold is a nonsingular algebraic subset of ${\mathbb{P}}^n({\mathbb{R}})$ whose Zariski closure in ${\mathbb{P}}^n({\mathbb{C}})$ is a nonsingular complex algebraic set, then it must be an algebraic complete intersection in ${\mathbb{P}}^n({\mathbb{R}})$.
LA - eng
KW - Smooth manifold; algebraic set; isotopy; complete intersection; vector bundle; smooth manifold
UR - http://eudml.org/doc/116310
ER -

References

top
  1. S. Akbulut, H. King, Transcendental submanifolds of n , Comment. Math. Helv. 68 (1993), 308-318 Zbl0806.57017MR1214234
  2. Selman Akbulut, Henry King, Transcendental submanifolds of n , Comment. Math. Helv. 80 (2005), 427-432 Zbl1071.57026MR2142249
  3. J. Bochnak, M. Buchner, W. Kucharz, Erratum: “Vector bundles over real algebraic varieties” [ K -Theory 3 (1989), no. 3, p. 271–298; MR1040403 (91b:14075)], -Theory 4 (1990) Zbl0761.14020MR1040403
  4. Jacek Bochnak, Michel Coste, Marie-Françoise Roy, Real algebraic geometry, 36 (1998), Springer-Verlag, Berlin Zbl0912.14023MR1659509
  5. James F. Davis, Paul Kirk, Lecture notes in algebraic topology, 35 (2001), American Mathematical Society, Providence, RI Zbl1018.55001MR1841974
  6. Robin Hartshorne, Varieties of small codimension in projective space, Bull. Amer. Math. Soc. 80 (1974), 1017-1032 Zbl0304.14005MR384816
  7. Heisuke Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II, Ann. of Math. (2) 79 (1964), p. 109–203; ibid. (2) 79 (1964), 205-326 Zbl0122.38603MR199184
  8. Dale Husemoller, Fibre bundles, 20 (1994), Springer-Verlag, New York Zbl0307.55015MR1249482
  9. Henry C. King, Approximating submanifolds of real projective space by varieties, Topology 15 (1976), 81-85 Zbl0316.57015MR396572
  10. Wojciech Kucharz, Homology classes of real algebraic sets, Ann. Inst. Fourier (Grenoble) 58 (2008), 989-1022 Zbl1153.14035MR2427517
  11. Wojciech Kucharz, Transcendental submanifolds of projective space, Comment. Math. Helv. 84 (2009), 127-133 Zbl1209.57023MR2466077
  12. John W. Milnor, Topology from the differentiable viewpoint, (1997), Princeton University Press, Princeton, NJ Zbl1025.57002MR1487640
  13. John W. Milnor, James D. Stasheff, Characteristic classes, (1974), Princeton University Press, Princeton, N. J. Zbl0298.57008MR440554
  14. John Nash, Real algebraic manifolds, Ann. of Math. (2) 56 (1952), 405-421 Zbl0048.38501MR50928
  15. Norman Steenrod, The Topology of Fibre Bundles, (1951), Princeton University Press, Princeton, N. J. Zbl0054.07103MR39258
  16. A. Tognoli, Su una congettura di Nash, Ann. Scuola Norm. Sup. Pisa (3) 27 (1973), 167-185 Zbl0263.57011MR396571

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.