Homology classes of real algebraic sets

Wojciech Kucharz[1]

  • [1] University of New Mexico Department of Mathematics and Statistics Albuquerque, New Mexico 87131-1141(USA)

Annales de l’institut Fourier (2008)

  • Volume: 58, Issue: 3, page 989-1022
  • ISSN: 0373-0956

Abstract

top
There is a large research program focused on comparison between algebraic and topological categories, whose origins go back to 1952 and the celebrated work of J. Nash on real algebraic manifolds. The present paper is a contribution to this program. It investigates the homology and cohomology classes represented by real algebraic sets. In particular, such classes are studied on algebraic models of smooth manifolds.

How to cite

top

Kucharz, Wojciech. "Homology classes of real algebraic sets." Annales de l’institut Fourier 58.3 (2008): 989-1022. <http://eudml.org/doc/10341>.

@article{Kucharz2008,
abstract = {There is a large research program focused on comparison between algebraic and topological categories, whose origins go back to 1952 and the celebrated work of J. Nash on real algebraic manifolds. The present paper is a contribution to this program. It investigates the homology and cohomology classes represented by real algebraic sets. In particular, such classes are studied on algebraic models of smooth manifolds.},
affiliation = {University of New Mexico Department of Mathematics and Statistics Albuquerque, New Mexico 87131-1141(USA)},
author = {Kucharz, Wojciech},
journal = {Annales de l’institut Fourier},
keywords = {Real algebraic variety; algebraic cycles; cohomology; algebraic models; regular maps; vector bundles},
language = {eng},
number = {3},
pages = {989-1022},
publisher = {Association des Annales de l’institut Fourier},
title = {Homology classes of real algebraic sets},
url = {http://eudml.org/doc/10341},
volume = {58},
year = {2008},
}

TY - JOUR
AU - Kucharz, Wojciech
TI - Homology classes of real algebraic sets
JO - Annales de l’institut Fourier
PY - 2008
PB - Association des Annales de l’institut Fourier
VL - 58
IS - 3
SP - 989
EP - 1022
AB - There is a large research program focused on comparison between algebraic and topological categories, whose origins go back to 1952 and the celebrated work of J. Nash on real algebraic manifolds. The present paper is a contribution to this program. It investigates the homology and cohomology classes represented by real algebraic sets. In particular, such classes are studied on algebraic models of smooth manifolds.
LA - eng
KW - Real algebraic variety; algebraic cycles; cohomology; algebraic models; regular maps; vector bundles
UR - http://eudml.org/doc/10341
ER -

References

top
  1. M. Abánades, W. Kucharz, Algebraic equivalence of real algebraic cycles, Ann. Inst. Fourier 49 (1999), 1797-1804 Zbl0932.14033MR1738066
  2. R. Abraham, J. Robbin, Transversal Mappings and Flows, (1967), Benjamin Inc., New York Zbl0171.44404MR240836
  3. S. Akbulut, H. King, The topology of real algebraic sets with isolated singularities, Ann. of Math. 113 (1981), 425-446 Zbl0494.57004MR621011
  4. S. Akbulut, H. King, The topology of real algebraic sets, Enseign. Math. 29 (1983), 221-261 Zbl0541.14019MR719311
  5. S. Akbulut, H. King, Topology of Real Algebraic Sets, 25 (1992), Springer Zbl0808.14045MR1225577
  6. S. Akbulut, H. King, Transcendental submanifolds of n , Comment. Math. Helv. 68 (1993), 308-318 Zbl0806.57017MR1214234
  7. W. Barth, Transplanting cohomology classes in complex projective space, Amer. J. Math. 92 (1970), 951-967 Zbl0206.50001MR287032
  8. R. Benedetti, M. Dedò, Counter examples to representing homology classes by real algebraic subvarieties up to homeomorphism, Compositio Math. 53 (1984), 143-151 Zbl0547.14019MR766294
  9. R. Benedetti, A. Tognoli, On real algebraic vector bundles, Bull. Sci. Math. 104 (1980), 89-112 Zbl0421.58001MR560747
  10. R. Benedetti, A. Tognoli, Théorèmes d’approximation en géométrie algébrique réelle, Publ. Math. Univ. Paris VII 9 (1980), 123-145 Zbl0576.14022
  11. R. Benedetti, A. Tognoli, Remarks and counterexamples in the theory of real vector bundles and cycles, Springer 959 (1982), 198-211 Zbl0498.14015MR683134
  12. J. Bochnak, M. Coste, M.-F. Roy, Real Algebraic Geometry, 36 (1998), Springer, Berlin Heidelberg New York Zbl0912.14023MR1659509
  13. J. Bochnak, W. Kucharz, Algebraic models of smooth manifolds, Invent. Math. 97 (1989), 585-611 Zbl0687.14023MR1005007
  14. J. Bochnak, W. Kucharz, Algebraic cycles and approximation theorems in real algebraic geometry, Trans. Amer. Math. Soc. 337 (1993), 463-472 Zbl0809.57015MR1091703
  15. J. Bochnak, W. Kucharz, Complete intersections in differential topology and analytic geometry, Bollettino U.M.I. (7) 10-B (1996), 1019-1041 Zbl0904.57013MR1430164
  16. J. Bochnak, W. Kucharz, On homology classes represented by real algebraic varieties, Banach Center Publications 44 (1998), 21-35 Zbl0915.14033MR1677394
  17. A. Borel, A. Haefliger, La classe d’homologie fondamentále d’un espace analytique, Bull. Soc. Math. France 89 (1961), 461-513 Zbl0102.38502
  18. P. E. Conner, Differentiable Periodic Maps, 738 (1979), Springer Zbl0417.57019MR548463
  19. A. Dold, Lectures on Algebraic Topology, 200 (1972), Springer, Berlin Heidelberg New York Zbl0234.55001MR415602
  20. L. Ein, An analogue of Max Noether’s theorem, Duke Math. J. 52 (1985), 689-706 Zbl0589.14034
  21. W. Fulton, Intersection Theory, 2 (1984), Springer, Berlin Heidelberg New York Zbl0541.14005MR732620
  22. A. Grothendieck, Technique de descente et théorèmes d’existence en géométrie algebrique, I - VI (1959-1962) Zbl0229.14007
  23. J. van Hamel, Algebraic cycles and topology of real algebraic varieties, (2000), Centrum voor Wiscunde en informatica, Amsterdam Zbl0986.14042MR1824786
  24. R. Hartshorne, Equivalence relations on algebraic cycles and subvarieties of small codimension, Amer. Math. Soc. 29 (1975), 129-164 Zbl0314.14001MR369359
  25. R. Hartshorne, Algebraic Geometry, 52 (1977), Springer, New York Heidelberg Berlin Zbl0367.14001MR463157
  26. H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero, Ann. of Math. 79 (1964), 109-326 Zbl0122.38603MR199184
  27. M. Hirsch, Differential Topology, 33 (1976), Springer, New York Heidelberg Berlin Zbl0356.57001MR448362
  28. S. T. Hu, Homotopy Theory, (1959), Academic Press, New York Zbl0088.38803MR106454
  29. W. Kucharz, Algebraic equivalence and homology classes of real algebraic cycles, Math. Nachr. 180 (1996), 135-140 Zbl0877.14003MR1397672
  30. W. Kucharz, Algebraic morphisms into rational real algebraic surfaces, J. Algebraic Geometry 8 (1999), 569-579 Zbl0973.14030MR1689358
  31. W. Kucharz, Algebraic equivalence of real divisors, Math. Z. 238 (2001), 817-827 Zbl1078.14537MR1872575
  32. W. Kucharz, Algebraic cycles and algebraic models of smooth manifolds, J. Algebraic Geometry 11 (2002), 101-127 Zbl1060.14084MR1865915
  33. W. Kucharz, Algebraic equivalence of cycles and algebraic models of smooth manifolds, Compositio Math. 140 (2004), 501-510 Zbl1052.14071MR2027201
  34. M. E. Larsen, On the topology of complex projective manifolds, Invent. Math. 19 (1973), 251-260 Zbl0255.32004MR318511
  35. J. Milnor, J. Stasheff, Characteristic Classes, 76 (1974), Princeton Univ. Press, Princeton, New Jersey Zbl0298.57008MR440554
  36. J. Nash, Real algebraic manifolds, Ann. of Math. 56 (1952), 405-421 Zbl0048.38501MR50928
  37. W. Rudin, Functional Analysis, (1991), McGraw-Hill, Inc, New York Zbl0867.46001MR1157815
  38. R. Silhol, A bound on the order of H n - 1 ( a ) ( X , / 2 ) on a real algebraic variety, 959 (1982), Springer Zbl0558.14003MR683148
  39. A. Sommese, Submanifolds of Abelain varieties, Math. Ann. 233 (1978), 229-256 Zbl0381.14007MR466647
  40. E. Spanier, Algebraic Topology, (1966), McGraw-Hill, Inc, New York Zbl0145.43303MR210112
  41. P. Teichner, 6 -dimensional manifolds without totally algebraic homology, Proc. Amer. Math. Soc. 123 (1995), 2909-2914 Zbl0858.57033MR1264830
  42. R. Thom, Quelques propriétés globales de variétés différentiables, Comment. Math. Helvetici 28 (1954), 17-86 Zbl0057.15502MR61823
  43. A. Tognoli, Su una congettura di Nash, Ann. Scuola Norm. Sup. Pisa Sci. Fis. Mat. 27 (1973), 167-185 Zbl0263.57011MR396571
  44. A. Tognoli, Algebraic approximation of manifolds and spaces, Lecture Notes in Math. 842 (1981), 73-94, Springer Zbl0456.57012MR636518

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.