Homology classes of real algebraic sets
- [1] University of New Mexico Department of Mathematics and Statistics Albuquerque, New Mexico 87131-1141(USA)
Annales de l’institut Fourier (2008)
- Volume: 58, Issue: 3, page 989-1022
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topKucharz, Wojciech. "Homology classes of real algebraic sets." Annales de l’institut Fourier 58.3 (2008): 989-1022. <http://eudml.org/doc/10341>.
@article{Kucharz2008,
abstract = {There is a large research program focused on comparison between algebraic and topological categories, whose origins go back to 1952 and the celebrated work of J. Nash on real algebraic manifolds. The present paper is a contribution to this program. It investigates the homology and cohomology classes represented by real algebraic sets. In particular, such classes are studied on algebraic models of smooth manifolds.},
affiliation = {University of New Mexico Department of Mathematics and Statistics Albuquerque, New Mexico 87131-1141(USA)},
author = {Kucharz, Wojciech},
journal = {Annales de l’institut Fourier},
keywords = {Real algebraic variety; algebraic cycles; cohomology; algebraic models; regular maps; vector bundles},
language = {eng},
number = {3},
pages = {989-1022},
publisher = {Association des Annales de l’institut Fourier},
title = {Homology classes of real algebraic sets},
url = {http://eudml.org/doc/10341},
volume = {58},
year = {2008},
}
TY - JOUR
AU - Kucharz, Wojciech
TI - Homology classes of real algebraic sets
JO - Annales de l’institut Fourier
PY - 2008
PB - Association des Annales de l’institut Fourier
VL - 58
IS - 3
SP - 989
EP - 1022
AB - There is a large research program focused on comparison between algebraic and topological categories, whose origins go back to 1952 and the celebrated work of J. Nash on real algebraic manifolds. The present paper is a contribution to this program. It investigates the homology and cohomology classes represented by real algebraic sets. In particular, such classes are studied on algebraic models of smooth manifolds.
LA - eng
KW - Real algebraic variety; algebraic cycles; cohomology; algebraic models; regular maps; vector bundles
UR - http://eudml.org/doc/10341
ER -
References
top- M. Abánades, W. Kucharz, Algebraic equivalence of real algebraic cycles, Ann. Inst. Fourier 49 (1999), 1797-1804 Zbl0932.14033MR1738066
- R. Abraham, J. Robbin, Transversal Mappings and Flows, (1967), Benjamin Inc., New York Zbl0171.44404MR240836
- S. Akbulut, H. King, The topology of real algebraic sets with isolated singularities, Ann. of Math. 113 (1981), 425-446 Zbl0494.57004MR621011
- S. Akbulut, H. King, The topology of real algebraic sets, Enseign. Math. 29 (1983), 221-261 Zbl0541.14019MR719311
- S. Akbulut, H. King, Topology of Real Algebraic Sets, 25 (1992), Springer Zbl0808.14045MR1225577
- S. Akbulut, H. King, Transcendental submanifolds of , Comment. Math. Helv. 68 (1993), 308-318 Zbl0806.57017MR1214234
- W. Barth, Transplanting cohomology classes in complex projective space, Amer. J. Math. 92 (1970), 951-967 Zbl0206.50001MR287032
- R. Benedetti, M. Dedò, Counter examples to representing homology classes by real algebraic subvarieties up to homeomorphism, Compositio Math. 53 (1984), 143-151 Zbl0547.14019MR766294
- R. Benedetti, A. Tognoli, On real algebraic vector bundles, Bull. Sci. Math. 104 (1980), 89-112 Zbl0421.58001MR560747
- R. Benedetti, A. Tognoli, Théorèmes d’approximation en géométrie algébrique réelle, Publ. Math. Univ. Paris VII 9 (1980), 123-145 Zbl0576.14022
- R. Benedetti, A. Tognoli, Remarks and counterexamples in the theory of real vector bundles and cycles, Springer 959 (1982), 198-211 Zbl0498.14015MR683134
- J. Bochnak, M. Coste, M.-F. Roy, Real Algebraic Geometry, 36 (1998), Springer, Berlin Heidelberg New York Zbl0912.14023MR1659509
- J. Bochnak, W. Kucharz, Algebraic models of smooth manifolds, Invent. Math. 97 (1989), 585-611 Zbl0687.14023MR1005007
- J. Bochnak, W. Kucharz, Algebraic cycles and approximation theorems in real algebraic geometry, Trans. Amer. Math. Soc. 337 (1993), 463-472 Zbl0809.57015MR1091703
- J. Bochnak, W. Kucharz, Complete intersections in differential topology and analytic geometry, Bollettino U.M.I. (7) 10-B (1996), 1019-1041 Zbl0904.57013MR1430164
- J. Bochnak, W. Kucharz, On homology classes represented by real algebraic varieties, Banach Center Publications 44 (1998), 21-35 Zbl0915.14033MR1677394
- A. Borel, A. Haefliger, La classe d’homologie fondamentále d’un espace analytique, Bull. Soc. Math. France 89 (1961), 461-513 Zbl0102.38502
- P. E. Conner, Differentiable Periodic Maps, 738 (1979), Springer Zbl0417.57019MR548463
- A. Dold, Lectures on Algebraic Topology, 200 (1972), Springer, Berlin Heidelberg New York Zbl0234.55001MR415602
- L. Ein, An analogue of Max Noether’s theorem, Duke Math. J. 52 (1985), 689-706 Zbl0589.14034
- W. Fulton, Intersection Theory, 2 (1984), Springer, Berlin Heidelberg New York Zbl0541.14005MR732620
- A. Grothendieck, Technique de descente et théorèmes d’existence en géométrie algebrique, I - VI (1959-1962) Zbl0229.14007
- J. van Hamel, Algebraic cycles and topology of real algebraic varieties, (2000), Centrum voor Wiscunde en informatica, Amsterdam Zbl0986.14042MR1824786
- R. Hartshorne, Equivalence relations on algebraic cycles and subvarieties of small codimension, Amer. Math. Soc. 29 (1975), 129-164 Zbl0314.14001MR369359
- R. Hartshorne, Algebraic Geometry, 52 (1977), Springer, New York Heidelberg Berlin Zbl0367.14001MR463157
- H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero, Ann. of Math. 79 (1964), 109-326 Zbl0122.38603MR199184
- M. Hirsch, Differential Topology, 33 (1976), Springer, New York Heidelberg Berlin Zbl0356.57001MR448362
- S. T. Hu, Homotopy Theory, (1959), Academic Press, New York Zbl0088.38803MR106454
- W. Kucharz, Algebraic equivalence and homology classes of real algebraic cycles, Math. Nachr. 180 (1996), 135-140 Zbl0877.14003MR1397672
- W. Kucharz, Algebraic morphisms into rational real algebraic surfaces, J. Algebraic Geometry 8 (1999), 569-579 Zbl0973.14030MR1689358
- W. Kucharz, Algebraic equivalence of real divisors, Math. Z. 238 (2001), 817-827 Zbl1078.14537MR1872575
- W. Kucharz, Algebraic cycles and algebraic models of smooth manifolds, J. Algebraic Geometry 11 (2002), 101-127 Zbl1060.14084MR1865915
- W. Kucharz, Algebraic equivalence of cycles and algebraic models of smooth manifolds, Compositio Math. 140 (2004), 501-510 Zbl1052.14071MR2027201
- M. E. Larsen, On the topology of complex projective manifolds, Invent. Math. 19 (1973), 251-260 Zbl0255.32004MR318511
- J. Milnor, J. Stasheff, Characteristic Classes, 76 (1974), Princeton Univ. Press, Princeton, New Jersey Zbl0298.57008MR440554
- J. Nash, Real algebraic manifolds, Ann. of Math. 56 (1952), 405-421 Zbl0048.38501MR50928
- W. Rudin, Functional Analysis, (1991), McGraw-Hill, Inc, New York Zbl0867.46001MR1157815
- R. Silhol, A bound on the order of on a real algebraic variety, 959 (1982), Springer Zbl0558.14003MR683148
- A. Sommese, Submanifolds of Abelain varieties, Math. Ann. 233 (1978), 229-256 Zbl0381.14007MR466647
- E. Spanier, Algebraic Topology, (1966), McGraw-Hill, Inc, New York Zbl0145.43303MR210112
- P. Teichner, -dimensional manifolds without totally algebraic homology, Proc. Amer. Math. Soc. 123 (1995), 2909-2914 Zbl0858.57033MR1264830
- R. Thom, Quelques propriétés globales de variétés différentiables, Comment. Math. Helvetici 28 (1954), 17-86 Zbl0057.15502MR61823
- A. Tognoli, Su una congettura di Nash, Ann. Scuola Norm. Sup. Pisa Sci. Fis. Mat. 27 (1973), 167-185 Zbl0263.57011MR396571
- A. Tognoli, Algebraic approximation of manifolds and spaces, Lecture Notes in Math. 842 (1981), 73-94, Springer Zbl0456.57012MR636518
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.