Homology classes of real algebraic sets
- [1] University of New Mexico Department of Mathematics and Statistics Albuquerque, New Mexico 87131-1141(USA)
Annales de l’institut Fourier (2008)
- Volume: 58, Issue: 3, page 989-1022
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topReferences
top- M. Abánades, W. Kucharz, Algebraic equivalence of real algebraic cycles, Ann. Inst. Fourier 49 (1999), 1797-1804 Zbl0932.14033MR1738066
- R. Abraham, J. Robbin, Transversal Mappings and Flows, (1967), Benjamin Inc., New York Zbl0171.44404MR240836
- S. Akbulut, H. King, The topology of real algebraic sets with isolated singularities, Ann. of Math. 113 (1981), 425-446 Zbl0494.57004MR621011
- S. Akbulut, H. King, The topology of real algebraic sets, Enseign. Math. 29 (1983), 221-261 Zbl0541.14019MR719311
- S. Akbulut, H. King, Topology of Real Algebraic Sets, 25 (1992), Springer Zbl0808.14045MR1225577
- S. Akbulut, H. King, Transcendental submanifolds of , Comment. Math. Helv. 68 (1993), 308-318 Zbl0806.57017MR1214234
- W. Barth, Transplanting cohomology classes in complex projective space, Amer. J. Math. 92 (1970), 951-967 Zbl0206.50001MR287032
- R. Benedetti, M. Dedò, Counter examples to representing homology classes by real algebraic subvarieties up to homeomorphism, Compositio Math. 53 (1984), 143-151 Zbl0547.14019MR766294
- R. Benedetti, A. Tognoli, On real algebraic vector bundles, Bull. Sci. Math. 104 (1980), 89-112 Zbl0421.58001MR560747
- R. Benedetti, A. Tognoli, Théorèmes d’approximation en géométrie algébrique réelle, Publ. Math. Univ. Paris VII 9 (1980), 123-145 Zbl0576.14022
- R. Benedetti, A. Tognoli, Remarks and counterexamples in the theory of real vector bundles and cycles, Springer 959 (1982), 198-211 Zbl0498.14015MR683134
- J. Bochnak, M. Coste, M.-F. Roy, Real Algebraic Geometry, 36 (1998), Springer, Berlin Heidelberg New York Zbl0912.14023MR1659509
- J. Bochnak, W. Kucharz, Algebraic models of smooth manifolds, Invent. Math. 97 (1989), 585-611 Zbl0687.14023MR1005007
- J. Bochnak, W. Kucharz, Algebraic cycles and approximation theorems in real algebraic geometry, Trans. Amer. Math. Soc. 337 (1993), 463-472 Zbl0809.57015MR1091703
- J. Bochnak, W. Kucharz, Complete intersections in differential topology and analytic geometry, Bollettino U.M.I. (7) 10-B (1996), 1019-1041 Zbl0904.57013MR1430164
- J. Bochnak, W. Kucharz, On homology classes represented by real algebraic varieties, Banach Center Publications 44 (1998), 21-35 Zbl0915.14033MR1677394
- A. Borel, A. Haefliger, La classe d’homologie fondamentále d’un espace analytique, Bull. Soc. Math. France 89 (1961), 461-513 Zbl0102.38502
- P. E. Conner, Differentiable Periodic Maps, 738 (1979), Springer Zbl0417.57019MR548463
- A. Dold, Lectures on Algebraic Topology, 200 (1972), Springer, Berlin Heidelberg New York Zbl0234.55001MR415602
- L. Ein, An analogue of Max Noether’s theorem, Duke Math. J. 52 (1985), 689-706 Zbl0589.14034
- W. Fulton, Intersection Theory, 2 (1984), Springer, Berlin Heidelberg New York Zbl0541.14005MR732620
- A. Grothendieck, Technique de descente et théorèmes d’existence en géométrie algebrique, I - VI (1959-1962) Zbl0229.14007
- J. van Hamel, Algebraic cycles and topology of real algebraic varieties, (2000), Centrum voor Wiscunde en informatica, Amsterdam Zbl0986.14042MR1824786
- R. Hartshorne, Equivalence relations on algebraic cycles and subvarieties of small codimension, Amer. Math. Soc. 29 (1975), 129-164 Zbl0314.14001MR369359
- R. Hartshorne, Algebraic Geometry, 52 (1977), Springer, New York Heidelberg Berlin Zbl0367.14001MR463157
- H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero, Ann. of Math. 79 (1964), 109-326 Zbl0122.38603MR199184
- M. Hirsch, Differential Topology, 33 (1976), Springer, New York Heidelberg Berlin Zbl0356.57001MR448362
- S. T. Hu, Homotopy Theory, (1959), Academic Press, New York Zbl0088.38803MR106454
- W. Kucharz, Algebraic equivalence and homology classes of real algebraic cycles, Math. Nachr. 180 (1996), 135-140 Zbl0877.14003MR1397672
- W. Kucharz, Algebraic morphisms into rational real algebraic surfaces, J. Algebraic Geometry 8 (1999), 569-579 Zbl0973.14030MR1689358
- W. Kucharz, Algebraic equivalence of real divisors, Math. Z. 238 (2001), 817-827 Zbl1078.14537MR1872575
- W. Kucharz, Algebraic cycles and algebraic models of smooth manifolds, J. Algebraic Geometry 11 (2002), 101-127 Zbl1060.14084MR1865915
- W. Kucharz, Algebraic equivalence of cycles and algebraic models of smooth manifolds, Compositio Math. 140 (2004), 501-510 Zbl1052.14071MR2027201
- M. E. Larsen, On the topology of complex projective manifolds, Invent. Math. 19 (1973), 251-260 Zbl0255.32004MR318511
- J. Milnor, J. Stasheff, Characteristic Classes, 76 (1974), Princeton Univ. Press, Princeton, New Jersey Zbl0298.57008MR440554
- J. Nash, Real algebraic manifolds, Ann. of Math. 56 (1952), 405-421 Zbl0048.38501MR50928
- W. Rudin, Functional Analysis, (1991), McGraw-Hill, Inc, New York Zbl0867.46001MR1157815
- R. Silhol, A bound on the order of on a real algebraic variety, 959 (1982), Springer Zbl0558.14003MR683148
- A. Sommese, Submanifolds of Abelain varieties, Math. Ann. 233 (1978), 229-256 Zbl0381.14007MR466647
- E. Spanier, Algebraic Topology, (1966), McGraw-Hill, Inc, New York Zbl0145.43303MR210112
- P. Teichner, -dimensional manifolds without totally algebraic homology, Proc. Amer. Math. Soc. 123 (1995), 2909-2914 Zbl0858.57033MR1264830
- R. Thom, Quelques propriétés globales de variétés différentiables, Comment. Math. Helvetici 28 (1954), 17-86 Zbl0057.15502MR61823
- A. Tognoli, Su una congettura di Nash, Ann. Scuola Norm. Sup. Pisa Sci. Fis. Mat. 27 (1973), 167-185 Zbl0263.57011MR396571
- A. Tognoli, Algebraic approximation of manifolds and spaces, Lecture Notes in Math. 842 (1981), 73-94, Springer Zbl0456.57012MR636518