Spectral isolation of bi-invariant metrics on compact Lie groups
Carolyn S. Gordon[1]; Dorothee Schueth[2]; Craig J. Sutton[1]
- [1] Dartmouth College Department of Mathematics Hanover, NH 03755 (USA)
- [2] Humboldt-Universität Institut für Mathematik Unter den Linden 6 10099, Berlin (Germany)
Annales de l’institut Fourier (2010)
- Volume: 60, Issue: 5, page 1617-1628
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topReferences
top- J. H. Conway, N. J. A. Sloane, Four-dimensional lattices with the same theta series, Internat. Math. Res. Notices (1992), 93-96 Zbl0770.11022MR1159450
- Carolyn S. Gordon, Isospectral deformations of metrics on spheres, Invent. Math. 145 (2001), 317-331 Zbl0995.58004MR1872549
- Carolyn S. Gordon, Craig J. Sutton, Spectral isolation of naturally reductive metrics on simple Lie groups Zbl1201.53060
- Ruishi Kuwabara, On the characterization of flat metrics by the spectrum, Comment. Math. Helv. 55 (1980), 427-444 Zbl0448.58027MR593057
- C. J. Leininger, D. B. McReynolds, W. D. Neumann, A. W. Reid, Length and eigenvalue equivalence, Int. Math. Res. Not. IMRN (2007) Zbl1158.53032MR2377017
- H. P. McKean, Selberg’s trace formula as applied to a compact Riemann surface, Comm. Pure Appl. Math. 25 (1972), 225-246 MR473166
- J. Milnor, Eigenvalues of the Laplace operator on certain manifolds, Proc. Nat. Acad. Sci. U.S.A. 51 (1964) Zbl0124.31202MR162204
- V. K. Patodi, Curvature and the fundamental solution of the heat operator, J. Indian Math. Soc. 34 (1970), 269-285 (1971) Zbl0237.53039MR488181
- Emily Proctor, Isospectral metrics and potentials on classical compact simple Lie groups, Michigan Math. J. 53 (2005), 305-318 Zbl1089.58022MR2152702
- Dorothee Schueth, Isospectral manifolds with different local geometries, J. Reine Angew. Math. 534 (2001), 41-94 Zbl0986.58016MR1831631
- Dorothee Schueth, Isospectral metrics on five-dimensional spheres, J. Differential Geom. 58 (2001), 87-111 Zbl1038.58042MR1895349
- Z. I. Szabo, Locally non-isometric yet super isospectral spaces, Geom. Funct. Anal. 9 (1999), 185-214 Zbl0964.53026MR1675894
- Shǔkichi Tanno, Eigenvalues of the Laplacian of Riemannian manifolds, Tǒhoku Math. J. (2) 25 (1973), 391-403 Zbl0266.53033MR334086
- Shǔkichi Tanno, A characterization of the canonical spheres by the spectrum, Math. Z. 175 (1980), 267-274 Zbl0431.53037MR602639
- Hajime Urakawa, On the least positive eigenvalue of the Laplacian for compact group manifolds, J. Math. Soc. Japan 31 (1979), 209-226 Zbl0402.58012MR519046
- Scott Wolpert, The eigenvalue spectrum as moduli for flat tori, Trans. Amer. Math. Soc. 244 (1978), 313-321 Zbl0405.58051MR514879