Spectral isolation of bi-invariant metrics on compact Lie groups
Carolyn S. Gordon[1]; Dorothee Schueth[2]; Craig J. Sutton[1]
- [1] Dartmouth College Department of Mathematics Hanover, NH 03755 (USA)
- [2] Humboldt-Universität Institut für Mathematik Unter den Linden 6 10099, Berlin (Germany)
Annales de l’institut Fourier (2010)
- Volume: 60, Issue: 5, page 1617-1628
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topGordon, Carolyn S., Schueth, Dorothee, and Sutton, Craig J.. "Spectral isolation of bi-invariant metrics on compact Lie groups." Annales de l’institut Fourier 60.5 (2010): 1617-1628. <http://eudml.org/doc/116316>.
@article{Gordon2010,
abstract = {We show that a bi-invariant metric on a compact connected Lie group $G$ is spectrally isolated within the class of left-invariant metrics. In fact, we prove that given a bi-invariant metric $g_0$ on $G$ there is a positive integer $N$ such that, within a neighborhood of $g_0$ in the class of left-invariant metrics of at most the same volume, $g_0$ is uniquely determined by the first $N$ distinct non-zero eigenvalues of its Laplacian (ignoring multiplicities). In the case where $G$ is simple, $N$ can be chosen to be two.},
affiliation = {Dartmouth College Department of Mathematics Hanover, NH 03755 (USA); Humboldt-Universität Institut für Mathematik Unter den Linden 6 10099, Berlin (Germany); Dartmouth College Department of Mathematics Hanover, NH 03755 (USA)},
author = {Gordon, Carolyn S., Schueth, Dorothee, Sutton, Craig J.},
journal = {Annales de l’institut Fourier},
keywords = {Laplacian; eigenvalue spectrum; Lie group; left-invariant metric; bi-invariant metric; bi-invariant metric.},
language = {eng},
number = {5},
pages = {1617-1628},
publisher = {Association des Annales de l’institut Fourier},
title = {Spectral isolation of bi-invariant metrics on compact Lie groups},
url = {http://eudml.org/doc/116316},
volume = {60},
year = {2010},
}
TY - JOUR
AU - Gordon, Carolyn S.
AU - Schueth, Dorothee
AU - Sutton, Craig J.
TI - Spectral isolation of bi-invariant metrics on compact Lie groups
JO - Annales de l’institut Fourier
PY - 2010
PB - Association des Annales de l’institut Fourier
VL - 60
IS - 5
SP - 1617
EP - 1628
AB - We show that a bi-invariant metric on a compact connected Lie group $G$ is spectrally isolated within the class of left-invariant metrics. In fact, we prove that given a bi-invariant metric $g_0$ on $G$ there is a positive integer $N$ such that, within a neighborhood of $g_0$ in the class of left-invariant metrics of at most the same volume, $g_0$ is uniquely determined by the first $N$ distinct non-zero eigenvalues of its Laplacian (ignoring multiplicities). In the case where $G$ is simple, $N$ can be chosen to be two.
LA - eng
KW - Laplacian; eigenvalue spectrum; Lie group; left-invariant metric; bi-invariant metric; bi-invariant metric.
UR - http://eudml.org/doc/116316
ER -
References
top- J. H. Conway, N. J. A. Sloane, Four-dimensional lattices with the same theta series, Internat. Math. Res. Notices (1992), 93-96 Zbl0770.11022MR1159450
- Carolyn S. Gordon, Isospectral deformations of metrics on spheres, Invent. Math. 145 (2001), 317-331 Zbl0995.58004MR1872549
- Carolyn S. Gordon, Craig J. Sutton, Spectral isolation of naturally reductive metrics on simple Lie groups Zbl1201.53060
- Ruishi Kuwabara, On the characterization of flat metrics by the spectrum, Comment. Math. Helv. 55 (1980), 427-444 Zbl0448.58027MR593057
- C. J. Leininger, D. B. McReynolds, W. D. Neumann, A. W. Reid, Length and eigenvalue equivalence, Int. Math. Res. Not. IMRN (2007) Zbl1158.53032MR2377017
- H. P. McKean, Selberg’s trace formula as applied to a compact Riemann surface, Comm. Pure Appl. Math. 25 (1972), 225-246 MR473166
- J. Milnor, Eigenvalues of the Laplace operator on certain manifolds, Proc. Nat. Acad. Sci. U.S.A. 51 (1964) Zbl0124.31202MR162204
- V. K. Patodi, Curvature and the fundamental solution of the heat operator, J. Indian Math. Soc. 34 (1970), 269-285 (1971) Zbl0237.53039MR488181
- Emily Proctor, Isospectral metrics and potentials on classical compact simple Lie groups, Michigan Math. J. 53 (2005), 305-318 Zbl1089.58022MR2152702
- Dorothee Schueth, Isospectral manifolds with different local geometries, J. Reine Angew. Math. 534 (2001), 41-94 Zbl0986.58016MR1831631
- Dorothee Schueth, Isospectral metrics on five-dimensional spheres, J. Differential Geom. 58 (2001), 87-111 Zbl1038.58042MR1895349
- Z. I. Szabo, Locally non-isometric yet super isospectral spaces, Geom. Funct. Anal. 9 (1999), 185-214 Zbl0964.53026MR1675894
- Shǔkichi Tanno, Eigenvalues of the Laplacian of Riemannian manifolds, Tǒhoku Math. J. (2) 25 (1973), 391-403 Zbl0266.53033MR334086
- Shǔkichi Tanno, A characterization of the canonical spheres by the spectrum, Math. Z. 175 (1980), 267-274 Zbl0431.53037MR602639
- Hajime Urakawa, On the least positive eigenvalue of the Laplacian for compact group manifolds, J. Math. Soc. Japan 31 (1979), 209-226 Zbl0402.58012MR519046
- Scott Wolpert, The eigenvalue spectrum as moduli for flat tori, Trans. Amer. Math. Soc. 244 (1978), 313-321 Zbl0405.58051MR514879
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.