Spectral isolation of bi-invariant metrics on compact Lie groups

Carolyn S. Gordon[1]; Dorothee Schueth[2]; Craig J. Sutton[1]

  • [1] Dartmouth College Department of Mathematics Hanover, NH 03755 (USA)
  • [2] Humboldt-Universität Institut für Mathematik Unter den Linden 6 10099, Berlin (Germany)

Annales de l’institut Fourier (2010)

  • Volume: 60, Issue: 5, page 1617-1628
  • ISSN: 0373-0956

Abstract

top
We show that a bi-invariant metric on a compact connected Lie group G is spectrally isolated within the class of left-invariant metrics. In fact, we prove that given a bi-invariant metric g 0 on G there is a positive integer N such that, within a neighborhood of g 0 in the class of left-invariant metrics of at most the same volume, g 0 is uniquely determined by the first N distinct non-zero eigenvalues of its Laplacian (ignoring multiplicities). In the case where G is simple, N can be chosen to be two.

How to cite

top

Gordon, Carolyn S., Schueth, Dorothee, and Sutton, Craig J.. "Spectral isolation of bi-invariant metrics on compact Lie groups." Annales de l’institut Fourier 60.5 (2010): 1617-1628. <http://eudml.org/doc/116316>.

@article{Gordon2010,
abstract = {We show that a bi-invariant metric on a compact connected Lie group $G$ is spectrally isolated within the class of left-invariant metrics. In fact, we prove that given a bi-invariant metric $g_0$ on $G$ there is a positive integer $N$ such that, within a neighborhood of $g_0$ in the class of left-invariant metrics of at most the same volume, $g_0$ is uniquely determined by the first $N$ distinct non-zero eigenvalues of its Laplacian (ignoring multiplicities). In the case where $G$ is simple, $N$ can be chosen to be two.},
affiliation = {Dartmouth College Department of Mathematics Hanover, NH 03755 (USA); Humboldt-Universität Institut für Mathematik Unter den Linden 6 10099, Berlin (Germany); Dartmouth College Department of Mathematics Hanover, NH 03755 (USA)},
author = {Gordon, Carolyn S., Schueth, Dorothee, Sutton, Craig J.},
journal = {Annales de l’institut Fourier},
keywords = {Laplacian; eigenvalue spectrum; Lie group; left-invariant metric; bi-invariant metric; bi-invariant metric.},
language = {eng},
number = {5},
pages = {1617-1628},
publisher = {Association des Annales de l’institut Fourier},
title = {Spectral isolation of bi-invariant metrics on compact Lie groups},
url = {http://eudml.org/doc/116316},
volume = {60},
year = {2010},
}

TY - JOUR
AU - Gordon, Carolyn S.
AU - Schueth, Dorothee
AU - Sutton, Craig J.
TI - Spectral isolation of bi-invariant metrics on compact Lie groups
JO - Annales de l’institut Fourier
PY - 2010
PB - Association des Annales de l’institut Fourier
VL - 60
IS - 5
SP - 1617
EP - 1628
AB - We show that a bi-invariant metric on a compact connected Lie group $G$ is spectrally isolated within the class of left-invariant metrics. In fact, we prove that given a bi-invariant metric $g_0$ on $G$ there is a positive integer $N$ such that, within a neighborhood of $g_0$ in the class of left-invariant metrics of at most the same volume, $g_0$ is uniquely determined by the first $N$ distinct non-zero eigenvalues of its Laplacian (ignoring multiplicities). In the case where $G$ is simple, $N$ can be chosen to be two.
LA - eng
KW - Laplacian; eigenvalue spectrum; Lie group; left-invariant metric; bi-invariant metric; bi-invariant metric.
UR - http://eudml.org/doc/116316
ER -

References

top
  1. J. H. Conway, N. J. A. Sloane, Four-dimensional lattices with the same theta series, Internat. Math. Res. Notices (1992), 93-96 Zbl0770.11022MR1159450
  2. Carolyn S. Gordon, Isospectral deformations of metrics on spheres, Invent. Math. 145 (2001), 317-331 Zbl0995.58004MR1872549
  3. Carolyn S. Gordon, Craig J. Sutton, Spectral isolation of naturally reductive metrics on simple Lie groups Zbl1201.53060
  4. Ruishi Kuwabara, On the characterization of flat metrics by the spectrum, Comment. Math. Helv. 55 (1980), 427-444 Zbl0448.58027MR593057
  5. C. J. Leininger, D. B. McReynolds, W. D. Neumann, A. W. Reid, Length and eigenvalue equivalence, Int. Math. Res. Not. IMRN (2007) Zbl1158.53032MR2377017
  6. H. P. McKean, Selberg’s trace formula as applied to a compact Riemann surface, Comm. Pure Appl. Math. 25 (1972), 225-246 MR473166
  7. J. Milnor, Eigenvalues of the Laplace operator on certain manifolds, Proc. Nat. Acad. Sci. U.S.A. 51 (1964) Zbl0124.31202MR162204
  8. V. K. Patodi, Curvature and the fundamental solution of the heat operator, J. Indian Math. Soc. 34 (1970), 269-285 (1971) Zbl0237.53039MR488181
  9. Emily Proctor, Isospectral metrics and potentials on classical compact simple Lie groups, Michigan Math. J. 53 (2005), 305-318 Zbl1089.58022MR2152702
  10. Dorothee Schueth, Isospectral manifolds with different local geometries, J. Reine Angew. Math. 534 (2001), 41-94 Zbl0986.58016MR1831631
  11. Dorothee Schueth, Isospectral metrics on five-dimensional spheres, J. Differential Geom. 58 (2001), 87-111 Zbl1038.58042MR1895349
  12. Z. I. Szabo, Locally non-isometric yet super isospectral spaces, Geom. Funct. Anal. 9 (1999), 185-214 Zbl0964.53026MR1675894
  13. Shǔkichi Tanno, Eigenvalues of the Laplacian of Riemannian manifolds, Tǒhoku Math. J. (2) 25 (1973), 391-403 Zbl0266.53033MR334086
  14. Shǔkichi Tanno, A characterization of the canonical spheres by the spectrum, Math. Z. 175 (1980), 267-274 Zbl0431.53037MR602639
  15. Hajime Urakawa, On the least positive eigenvalue of the Laplacian for compact group manifolds, J. Math. Soc. Japan 31 (1979), 209-226 Zbl0402.58012MR519046
  16. Scott Wolpert, The eigenvalue spectrum as moduli for flat tori, Trans. Amer. Math. Soc. 244 (1978), 313-321 Zbl0405.58051MR514879

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.