Generic Newton polygons of Ekedahl-Oort strata: Oort’s conjecture

Shushi Harashita[1]

  • [1] Yokohama National University Graduate School of Environment and Information Sciences 79-7 Tokiwadai, Hodogaya-ku Yokohama 240-8501(Japan)

Annales de l’institut Fourier (2010)

  • Volume: 60, Issue: 5, page 1787-1830
  • ISSN: 0373-0956

Abstract

top
We study the moduli space of principally polarized abelian varieties in positive characteristic. In this paper we determine the Newton polygon of any generic point of each Ekedahl-Oort stratum, by proving Oort’s conjecture on intersections of Newton polygon strata and Ekedahl-Oort strata. This result tells us a combinatorial algorithm determining the optimal upper bound of the Newton polygons of principally polarized abelian varieties with a given isomorphism type of p -kernel.

How to cite

top

Harashita, Shushi. "Generic Newton polygons of Ekedahl-Oort strata: Oort’s conjecture." Annales de l’institut Fourier 60.5 (2010): 1787-1830. <http://eudml.org/doc/116321>.

@article{Harashita2010,
abstract = {We study the moduli space of principally polarized abelian varieties in positive characteristic. In this paper we determine the Newton polygon of any generic point of each Ekedahl-Oort stratum, by proving Oort’s conjecture on intersections of Newton polygon strata and Ekedahl-Oort strata. This result tells us a combinatorial algorithm determining the optimal upper bound of the Newton polygons of principally polarized abelian varieties with a given isomorphism type of $p$-kernel.},
affiliation = {Yokohama National University Graduate School of Environment and Information Sciences 79-7 Tokiwadai, Hodogaya-ku Yokohama 240-8501(Japan)},
author = {Harashita, Shushi},
journal = {Annales de l’institut Fourier},
keywords = {Abelian varieties; the Newton polygon stratification; the Ekedahl-Oort stratification; Oort’s conjecture; Oort's conjecture},
language = {eng},
number = {5},
pages = {1787-1830},
publisher = {Association des Annales de l’institut Fourier},
title = {Generic Newton polygons of Ekedahl-Oort strata: Oort’s conjecture},
url = {http://eudml.org/doc/116321},
volume = {60},
year = {2010},
}

TY - JOUR
AU - Harashita, Shushi
TI - Generic Newton polygons of Ekedahl-Oort strata: Oort’s conjecture
JO - Annales de l’institut Fourier
PY - 2010
PB - Association des Annales de l’institut Fourier
VL - 60
IS - 5
SP - 1787
EP - 1830
AB - We study the moduli space of principally polarized abelian varieties in positive characteristic. In this paper we determine the Newton polygon of any generic point of each Ekedahl-Oort stratum, by proving Oort’s conjecture on intersections of Newton polygon strata and Ekedahl-Oort strata. This result tells us a combinatorial algorithm determining the optimal upper bound of the Newton polygons of principally polarized abelian varieties with a given isomorphism type of $p$-kernel.
LA - eng
KW - Abelian varieties; the Newton polygon stratification; the Ekedahl-Oort stratification; Oort’s conjecture; Oort's conjecture
UR - http://eudml.org/doc/116321
ER -

References

top
  1. S. Billey, V. Lakshmibai, Singular loci of Schubert varieties, 182 (2000), Birkhäuser Boston, Inc., Boston, MA Zbl0959.14032MR1782635
  2. N. Bourbaki, Lie groups and Lie algebras, (2002), Springer-Verlag, Berlin Zbl0983.17001MR1890629
  3. C.-L. Chai, F. Oort, Monodromy and irreducibility of leaves Zbl1228.14021MR2498069
  4. M. Demazure, Lectures on p -divisible groups, 302 (1972), Springer-Verlag, Berlin-New York Zbl0247.14010MR344261
  5. T. Ekedahl, G. van der Geer, Cycle classes of the E-O stratification on the moduli of abelian varieties, Algebra, Arithmetic and Geometry Volume I: In Honor of Y. I. Manin 269 (2009), 596-636, Tschinkel, Yuri; Zarhin, Yuri G. Zbl1200.14089MR2641181
  6. G. van der Geer, Cycles on the Moduli Space of Abelian Varieties, Moduli of curves and abelian varieties (1999), 65-89, Vieweg, Braunschweig Zbl0974.14031MR1722539
  7. E. Z. Goren, F. Oort, Stratifications of Hilbert Modular Varieties, J. Algebraic Geom. 9 (2000), 111-154 Zbl0973.14010MR1713522
  8. A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas IV, (1967), Inst. Hautes Études Sci. Zbl0153.22301MR238860
  9. S. Harashita, Ekedahl-Oort strata and the first Newton slope strata, J. Algebraic Geom. 16 (2007), 171-199 Zbl1113.14031MR2257323
  10. S. Harashita, Configuration of the central streams in the moduli of abelian varieties, Asian J. Math. 13 (2009), 215-250 Zbl1193.14055MR2559109
  11. S. Harashita, Successive extensions of minimal p -divisible groups, J. Pure Appl. Algebra 213 (2009), 1823-1834 Zbl1170.14034MR2518181
  12. T. Honda, Isogeny classes of abelian varieties over finite fields, J. Math. Soc. Japan 20 (1968), 83-95 Zbl0203.53302MR229642
  13. L. Illusie, Déformations de groupes de Barsotti-Tate (d’après A. Grothendieck), Seminar on arithmetic bundles: the Mordell conjecture (Paris, 1983/84) 127 (1985), 151-198, Soc. Math. France Zbl1182.14050MR801922
  14. A. J. de Jong, F. Oort, Purity of the stratification by Newton polygons, J. Amer. Math. Soc. 13 (2000), 209-241 Zbl0954.14007MR1703336
  15. N. M. Katz, Slope filtration of F -crystals, Journ. Géom. Alg. Rennes, Vol. I 63 (1979), 113-164, Soc. Math. France Zbl0426.14007MR563463
  16. H. Kraft, Kommutative algebraische p -Gruppen (mit Anwendungen auf p -divisible Gruppen und abelsche Varietäten), (September 1975), Bereich Bonn 
  17. K.-Z. Li, F. Oort, Moduli of Supersingular Abelian Varieties, 1680 (1998), Springer-Verlag, Berlin Zbl0920.14021MR1611305
  18. Yu. I. Manin, Theory of commutative formal groups over fields of finite characteristic, Uspehi Mat. Nauk 18 (1963), 3-90 Zbl0128.15603MR157972
  19. H. Matsumura, Commutative ring theory, (1986), Cambridge University Press, Cambridge Zbl0603.13001MR879273
  20. B. Moonen, Group schemes with additional structures and Weyl group cosets, Moduli of abelian varieties 195 (2001), 255-298, C. Faber, G. van der Geer, F. Oort, Basel Zbl1084.14523MR1827024
  21. B. Moonen, T. Wedhorn, Discrete invariants of varieties in positive characteristic, Int. Math. Res. Not. (2004), 3855-3903 Zbl1084.14023MR2104263
  22. D. Mumford, Abelian varieties, (1970), Oxford University Press, London Zbl0223.14022MR282985
  23. F. Oort, A stratification of a moduli space of abelian varieties, Moduli of abelian varieties 195 (2001), 345-416, C. Faber, G. van der Geer, F. Oort, Basel Zbl1052.14047MR1827027
  24. F. Oort, Foliations in moduli spaces of abelian varieties, J. Amer. Math. Soc. 17 (2004), 267-296 Zbl1041.14018MR2051612
  25. F. Oort, Minimal p -divisible groups, Ann. of Math. 161 (2005), 1021-1036 Zbl1081.14065MR2153405
  26. F. Oort, Simple p -kernels of p -divisible groups, Adv. Math. 198 (2005), 275-310 Zbl1093.14064MR2183256
  27. T. Wedhorn, Flatness of the mod p period morphism for the moduli space of principally polarized abelian varieties, preprint, arXiv: 0507177v1 
  28. T. Wedhorn, Specialization of F -zips, preprint, arXiv: 0507175v1 Zbl06536256
  29. T. Zink, The display of a formal p -divisible group, Cohomologies -adiques et applications arithmétiques, I 278 (2002), 127-248, Soc. Math. France Zbl1008.14008MR1922825

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.