Hölder continuity of solutions to the Monge-Ampère equations on compact Kähler manifolds

Pham Hoang Hiep[1]

  • [1] University of Education (Dai hoc Su Pham Ha Noi) Department of Mathematics CauGiay, Hanoi (Vietnam)

Annales de l’institut Fourier (2010)

  • Volume: 60, Issue: 5, page 1857-1869
  • ISSN: 0373-0956

Abstract

top
We study Hölder continuity of solutions to the Monge-Ampère equations on compact Kähler manifolds. T. C. Dinh, V.A. Nguyen and N. Sibony have shown that the measure ω u n is moderate if u is Hölder continuous. We prove a theorem which is a partial converse to this result.

How to cite

top

Hiep, Pham Hoang. "Hölder continuity of solutions to the Monge-Ampère equations on compact Kähler manifolds." Annales de l’institut Fourier 60.5 (2010): 1857-1869. <http://eudml.org/doc/116323>.

@article{Hiep2010,
abstract = {We study Hölder continuity of solutions to the Monge-Ampère equations on compact Kähler manifolds. T. C. Dinh, V.A. Nguyen and N. Sibony have shown that the measure $\omega _u^n$ is moderate if $u$ is Hölder continuous. We prove a theorem which is a partial converse to this result.},
affiliation = {University of Education (Dai hoc Su Pham Ha Noi) Department of Mathematics CauGiay, Hanoi (Vietnam)},
author = {Hiep, Pham Hoang},
journal = {Annales de l’institut Fourier},
keywords = {Hölder continuity; complex Monge-Ampère operator; $\omega $-plurisubharmonic functions; compact Kähler manifolds; -plurisubharmonic functions},
language = {eng},
number = {5},
pages = {1857-1869},
publisher = {Association des Annales de l’institut Fourier},
title = {Hölder continuity of solutions to the Monge-Ampère equations on compact Kähler manifolds},
url = {http://eudml.org/doc/116323},
volume = {60},
year = {2010},
}

TY - JOUR
AU - Hiep, Pham Hoang
TI - Hölder continuity of solutions to the Monge-Ampère equations on compact Kähler manifolds
JO - Annales de l’institut Fourier
PY - 2010
PB - Association des Annales de l’institut Fourier
VL - 60
IS - 5
SP - 1857
EP - 1869
AB - We study Hölder continuity of solutions to the Monge-Ampère equations on compact Kähler manifolds. T. C. Dinh, V.A. Nguyen and N. Sibony have shown that the measure $\omega _u^n$ is moderate if $u$ is Hölder continuous. We prove a theorem which is a partial converse to this result.
LA - eng
KW - Hölder continuity; complex Monge-Ampère operator; $\omega $-plurisubharmonic functions; compact Kähler manifolds; -plurisubharmonic functions
UR - http://eudml.org/doc/116323
ER -

References

top
  1. David H. Armitage, Stephen J. Gardiner, Classical potential theory, (2001), Springer-Verlag London Ltd., London Zbl0972.31001MR1801253
  2. Eric Bedford, B. A. Taylor, The Dirichlet problem for a complex Monge-Ampère equation, Invent. Math. 37 (1976), 1-44 Zbl0315.31007MR445006
  3. Eric Bedford, B. A. Taylor, A new capacity for plurisubharmonic functions, Acta Math. 149 (1982), 1-40 Zbl0547.32012MR674165
  4. U. Cegrell, S. Kołodziej, The equation of complex Monge-Ampère type and stability of solutions, Math. Ann. 334 (2006), 713-729 Zbl1103.32019MR2209253
  5. Urban Cegrell, Pluricomplex energy, Acta Math. 180 (1998), 187-217 Zbl0926.32042MR1638768
  6. Urban Cegrell, The general definition of the complex Monge-Ampère operator, Ann. Inst. Fourier (Grenoble) 54 (2004), 159-179 Zbl1065.32020MR2069125
  7. Dan Coman, Vincent Guedj, Ahmed Zeriahi, Domains of definition of Monge-Ampère operators on compact Kähler manifolds, Math. Z. 259 (2008), 393-418 Zbl1137.32015MR2390088
  8. J. P. Demailly, Complex analytic and differential geometry, self published e-book (1997) 
  9. Jean-Pierre Demailly, Mesures de Monge-Ampère et mesures pluriharmoniques, Math. Z. 194 (1987), 519-564 Zbl0595.32006MR881709
  10. Jean-Pierre Demailly, Monge-Ampère operators, Lelong numbers and intersection theory, Complex analysis and geometry (1993), 115-193, Plenum, New York Zbl0792.32006MR1211880
  11. S. Dinew, P. H. Hiep, Convergence in capacity on compact Kähler manifolds, (2009) Zbl1268.32008MR2383345
  12. S. Dinew, Z. Zhang, Stability of Bounded Solutions for Degenerate Complex Monge-Ampère equations, (2008) Zbl1210.32020
  13. Sławomir Dinew, Cegrell classes on compact Kähler manifolds, Ann. Polon. Math. 91 (2007), 179-195 Zbl1124.32013MR2337841
  14. Sławomir Dinew, An inequality for mixed Monge-Ampère measures, Math. Z. 262 (2009), 1-15 Zbl1169.32007MR2491597
  15. Sławomir Dinew, Uniqueness in ( X , ω ) , J. Funct. Anal. 256 (2009), 2113-2122 Zbl1171.32024MR2498760
  16. T. C. Dinh, V. A. Nguyen, N. Sibony, Exponential estimates for plurisubharmonic functions and stochastic dynamics, (2008) 
  17. Tien-Cuong Dinh, Nessim Sibony, Distribution des valeurs de transformations méromorphes et applications, Comment. Math. Helv. 81 (2006), 221-258 Zbl1094.32005MR2208805
  18. Philippe Eyssidieux, Vincent Guedj, Ahmed Zeriahi, Singular Kähler-Einstein metrics, J. Amer. Math. Soc. 22 (2009), 607-639 Zbl1215.32017MR2505296
  19. Vincent Guedj, Ahmed Zeriahi, Intrinsic capacities on compact Kähler manifolds, J. Geom. Anal. 15 (2005), 607-639 Zbl1087.32020MR2203165
  20. Vincent Guedj, Ahmed Zeriahi, The weighted Monge-Ampère energy of quasiplurisubharmonic functions, J. Funct. Anal. 250 (2007), 442-482 Zbl1143.32022MR2352488
  21. P. H. Hiep, On the convergence in capacity on compact Kähler manifolds and its applications, Proc. Amer. Math. Soc. 136 (2008), 2007-2018 Zbl1169.32010MR2383507
  22. Lars Hörmander, Notions of convexity, 127 (1994), Birkhäuser Boston Inc., Boston, MA Zbl0835.32001MR1301332
  23. Sławomir Kołodziej, The complex Monge-Ampère equation, Acta Math. 180 (1998), 69-117 Zbl0913.35043MR1618325
  24. Sławomir Kołodziej, The Monge-Ampère equation on compact Kähler manifolds, Indiana Univ. Math. J. 52 (2003), 667-686 Zbl1039.32050
  25. Sławomir Kołodziej, The complex Monge-Ampère equation and pluripotential theory, Mem. Amer. Math. Soc. 178 (2005) Zbl1084.32027
  26. Sławomir Kołodziej, The set of measures given by bounded solutions of the complex Monge-Ampère equation on compact Kähler manifolds, J. London Math. Soc. (2) 72 (2005), 225-238 Zbl1098.32011MR2145737
  27. Sławomir Kołodziej, Hölder continuity of solutions to the complex Monge-Ampère equation with the right-hand side in L p : the case of compact Kähler manifolds, Math. Ann. 342 (2008), 379-386 Zbl1149.32018MR2425147
  28. Sławomir Kołodziej, Gang Tian, A uniform L estimate for complex Monge-Ampère equations, Math. Ann. 342 (2008), 773-787 Zbl1159.32022MR2443763
  29. Józef Siciak, On some extremal functions and their applications in the theory of analytic functions of several complex variables, Trans. Amer. Math. Soc. 105 (1962), 322-357 Zbl0111.08102MR143946
  30. Józef Siciak, Franciszek Leja (1885–1979), Wiadom. Mat. 24 (1982), 65-90 Zbl0529.01013MR705613
  31. Shing Tung Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I, Comm. Pure Appl. Math. 31 (1978), 339-411 Zbl0369.53059MR480350
  32. Ahmed Zeriahi, The size of plurisubharmonic lemniscates in terms of Hausdorff-Riesz measures and capacities, Proc. London Math. Soc. (3) 89 (2004), 104-122 Zbl1058.31005MR2063661
  33. Ahmed Zeriahi, A minimum principle for plurisubharmonic functions, Indiana Univ. Math. J. 56 (2007), 2671-2696 Zbl1139.31002MR2375697

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.