Hölder continuity of solutions to the Monge-Ampère equations on compact Kähler manifolds
- [1] University of Education (Dai hoc Su Pham Ha Noi) Department of Mathematics CauGiay, Hanoi (Vietnam)
Annales de l’institut Fourier (2010)
- Volume: 60, Issue: 5, page 1857-1869
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topHiep, Pham Hoang. "Hölder continuity of solutions to the Monge-Ampère equations on compact Kähler manifolds." Annales de l’institut Fourier 60.5 (2010): 1857-1869. <http://eudml.org/doc/116323>.
@article{Hiep2010,
abstract = {We study Hölder continuity of solutions to the Monge-Ampère equations on compact Kähler manifolds. T. C. Dinh, V.A. Nguyen and N. Sibony have shown that the measure $\omega _u^n$ is moderate if $u$ is Hölder continuous. We prove a theorem which is a partial converse to this result.},
affiliation = {University of Education (Dai hoc Su Pham Ha Noi) Department of Mathematics CauGiay, Hanoi (Vietnam)},
author = {Hiep, Pham Hoang},
journal = {Annales de l’institut Fourier},
keywords = {Hölder continuity; complex Monge-Ampère operator; $\omega $-plurisubharmonic functions; compact Kähler manifolds; -plurisubharmonic functions},
language = {eng},
number = {5},
pages = {1857-1869},
publisher = {Association des Annales de l’institut Fourier},
title = {Hölder continuity of solutions to the Monge-Ampère equations on compact Kähler manifolds},
url = {http://eudml.org/doc/116323},
volume = {60},
year = {2010},
}
TY - JOUR
AU - Hiep, Pham Hoang
TI - Hölder continuity of solutions to the Monge-Ampère equations on compact Kähler manifolds
JO - Annales de l’institut Fourier
PY - 2010
PB - Association des Annales de l’institut Fourier
VL - 60
IS - 5
SP - 1857
EP - 1869
AB - We study Hölder continuity of solutions to the Monge-Ampère equations on compact Kähler manifolds. T. C. Dinh, V.A. Nguyen and N. Sibony have shown that the measure $\omega _u^n$ is moderate if $u$ is Hölder continuous. We prove a theorem which is a partial converse to this result.
LA - eng
KW - Hölder continuity; complex Monge-Ampère operator; $\omega $-plurisubharmonic functions; compact Kähler manifolds; -plurisubharmonic functions
UR - http://eudml.org/doc/116323
ER -
References
top- David H. Armitage, Stephen J. Gardiner, Classical potential theory, (2001), Springer-Verlag London Ltd., London Zbl0972.31001MR1801253
- Eric Bedford, B. A. Taylor, The Dirichlet problem for a complex Monge-Ampère equation, Invent. Math. 37 (1976), 1-44 Zbl0315.31007MR445006
- Eric Bedford, B. A. Taylor, A new capacity for plurisubharmonic functions, Acta Math. 149 (1982), 1-40 Zbl0547.32012MR674165
- U. Cegrell, S. Kołodziej, The equation of complex Monge-Ampère type and stability of solutions, Math. Ann. 334 (2006), 713-729 Zbl1103.32019MR2209253
- Urban Cegrell, Pluricomplex energy, Acta Math. 180 (1998), 187-217 Zbl0926.32042MR1638768
- Urban Cegrell, The general definition of the complex Monge-Ampère operator, Ann. Inst. Fourier (Grenoble) 54 (2004), 159-179 Zbl1065.32020MR2069125
- Dan Coman, Vincent Guedj, Ahmed Zeriahi, Domains of definition of Monge-Ampère operators on compact Kähler manifolds, Math. Z. 259 (2008), 393-418 Zbl1137.32015MR2390088
- J. P. Demailly, Complex analytic and differential geometry, self published e-book (1997)
- Jean-Pierre Demailly, Mesures de Monge-Ampère et mesures pluriharmoniques, Math. Z. 194 (1987), 519-564 Zbl0595.32006MR881709
- Jean-Pierre Demailly, Monge-Ampère operators, Lelong numbers and intersection theory, Complex analysis and geometry (1993), 115-193, Plenum, New York Zbl0792.32006MR1211880
- S. Dinew, P. H. Hiep, Convergence in capacity on compact Kähler manifolds, (2009) Zbl1268.32008MR2383345
- S. Dinew, Z. Zhang, Stability of Bounded Solutions for Degenerate Complex Monge-Ampère equations, (2008) Zbl1210.32020
- Sławomir Dinew, Cegrell classes on compact Kähler manifolds, Ann. Polon. Math. 91 (2007), 179-195 Zbl1124.32013MR2337841
- Sławomir Dinew, An inequality for mixed Monge-Ampère measures, Math. Z. 262 (2009), 1-15 Zbl1169.32007MR2491597
- Sławomir Dinew, Uniqueness in , J. Funct. Anal. 256 (2009), 2113-2122 Zbl1171.32024MR2498760
- T. C. Dinh, V. A. Nguyen, N. Sibony, Exponential estimates for plurisubharmonic functions and stochastic dynamics, (2008)
- Tien-Cuong Dinh, Nessim Sibony, Distribution des valeurs de transformations méromorphes et applications, Comment. Math. Helv. 81 (2006), 221-258 Zbl1094.32005MR2208805
- Philippe Eyssidieux, Vincent Guedj, Ahmed Zeriahi, Singular Kähler-Einstein metrics, J. Amer. Math. Soc. 22 (2009), 607-639 Zbl1215.32017MR2505296
- Vincent Guedj, Ahmed Zeriahi, Intrinsic capacities on compact Kähler manifolds, J. Geom. Anal. 15 (2005), 607-639 Zbl1087.32020MR2203165
- Vincent Guedj, Ahmed Zeriahi, The weighted Monge-Ampère energy of quasiplurisubharmonic functions, J. Funct. Anal. 250 (2007), 442-482 Zbl1143.32022MR2352488
- P. H. Hiep, On the convergence in capacity on compact Kähler manifolds and its applications, Proc. Amer. Math. Soc. 136 (2008), 2007-2018 Zbl1169.32010MR2383507
- Lars Hörmander, Notions of convexity, 127 (1994), Birkhäuser Boston Inc., Boston, MA Zbl0835.32001MR1301332
- Sławomir Kołodziej, The complex Monge-Ampère equation, Acta Math. 180 (1998), 69-117 Zbl0913.35043MR1618325
- Sławomir Kołodziej, The Monge-Ampère equation on compact Kähler manifolds, Indiana Univ. Math. J. 52 (2003), 667-686 Zbl1039.32050
- Sławomir Kołodziej, The complex Monge-Ampère equation and pluripotential theory, Mem. Amer. Math. Soc. 178 (2005) Zbl1084.32027
- Sławomir Kołodziej, The set of measures given by bounded solutions of the complex Monge-Ampère equation on compact Kähler manifolds, J. London Math. Soc. (2) 72 (2005), 225-238 Zbl1098.32011MR2145737
- Sławomir Kołodziej, Hölder continuity of solutions to the complex Monge-Ampère equation with the right-hand side in : the case of compact Kähler manifolds, Math. Ann. 342 (2008), 379-386 Zbl1149.32018MR2425147
- Sławomir Kołodziej, Gang Tian, A uniform estimate for complex Monge-Ampère equations, Math. Ann. 342 (2008), 773-787 Zbl1159.32022MR2443763
- Józef Siciak, On some extremal functions and their applications in the theory of analytic functions of several complex variables, Trans. Amer. Math. Soc. 105 (1962), 322-357 Zbl0111.08102MR143946
- Józef Siciak, Franciszek Leja (1885–1979), Wiadom. Mat. 24 (1982), 65-90 Zbl0529.01013MR705613
- Shing Tung Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I, Comm. Pure Appl. Math. 31 (1978), 339-411 Zbl0369.53059MR480350
- Ahmed Zeriahi, The size of plurisubharmonic lemniscates in terms of Hausdorff-Riesz measures and capacities, Proc. London Math. Soc. (3) 89 (2004), 104-122 Zbl1058.31005MR2063661
- Ahmed Zeriahi, A minimum principle for plurisubharmonic functions, Indiana Univ. Math. J. 56 (2007), 2671-2696 Zbl1139.31002MR2375697
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.