Uniform minimality, unconditionality and interpolation in backward shift invariant subspaces

Eric Amar[1]; Andreas Hartmann[1]

  • [1] Université Bordeaux I Institut de Mathématiques Équipe d’Analyse & Géométrie 351 cours de la Libération 33405 Talence (France)

Annales de l’institut Fourier (2010)

  • Volume: 60, Issue: 6, page 1871-1903
  • ISSN: 0373-0956

Abstract

top
We discuss relations between uniform minimality, unconditionality and interpolation for families of reproducing kernels in backward shift invariant subspaces. This class of spaces contains as prominent examples the Paley-Wiener spaces for which it is known that uniform minimality does in general neither imply interpolation nor unconditionality. Hence, contrarily to the situation of standard Hardy spaces (and of other scales of spaces), changing the size of the space seems necessary to deduce unconditionality or interpolation from uniform minimality. Such a change can take two directions: lowering the power of integration, or “increasing” the defining inner function (e.g. increasing the type in the case of Paley-Wiener space). Khinchin’s inequalities play a substantial role in the proofs of our main results.

How to cite

top

Amar, Eric, and Hartmann, Andreas. "Uniform minimality, unconditionality and interpolation in backward shift invariant subspaces." Annales de l’institut Fourier 60.6 (2010): 1871-1903. <http://eudml.org/doc/116324>.

@article{Amar2010,
abstract = {We discuss relations between uniform minimality, unconditionality and interpolation for families of reproducing kernels in backward shift invariant subspaces. This class of spaces contains as prominent examples the Paley-Wiener spaces for which it is known that uniform minimality does in general neither imply interpolation nor unconditionality. Hence, contrarily to the situation of standard Hardy spaces (and of other scales of spaces), changing the size of the space seems necessary to deduce unconditionality or interpolation from uniform minimality. Such a change can take two directions: lowering the power of integration, or “increasing” the defining inner function (e.g. increasing the type in the case of Paley-Wiener space). Khinchin’s inequalities play a substantial role in the proofs of our main results.},
affiliation = {Université Bordeaux I Institut de Mathématiques Équipe d’Analyse & Géométrie 351 cours de la Libération 33405 Talence (France); Université Bordeaux I Institut de Mathématiques Équipe d’Analyse & Géométrie 351 cours de la Libération 33405 Talence (France)},
author = {Amar, Eric, Hartmann, Andreas},
journal = {Annales de l’institut Fourier},
keywords = {Uniform minimality; unconditional bases; model spaces; Paley-Wiener spaces; interpolation; one-component inner functions; interpolating sequence; Carleson condition; Carleson measures},
language = {eng},
number = {6},
pages = {1871-1903},
publisher = {Association des Annales de l’institut Fourier},
title = {Uniform minimality, unconditionality and interpolation in backward shift invariant subspaces},
url = {http://eudml.org/doc/116324},
volume = {60},
year = {2010},
}

TY - JOUR
AU - Amar, Eric
AU - Hartmann, Andreas
TI - Uniform minimality, unconditionality and interpolation in backward shift invariant subspaces
JO - Annales de l’institut Fourier
PY - 2010
PB - Association des Annales de l’institut Fourier
VL - 60
IS - 6
SP - 1871
EP - 1903
AB - We discuss relations between uniform minimality, unconditionality and interpolation for families of reproducing kernels in backward shift invariant subspaces. This class of spaces contains as prominent examples the Paley-Wiener spaces for which it is known that uniform minimality does in general neither imply interpolation nor unconditionality. Hence, contrarily to the situation of standard Hardy spaces (and of other scales of spaces), changing the size of the space seems necessary to deduce unconditionality or interpolation from uniform minimality. Such a change can take two directions: lowering the power of integration, or “increasing” the defining inner function (e.g. increasing the type in the case of Paley-Wiener space). Khinchin’s inequalities play a substantial role in the proofs of our main results.
LA - eng
KW - Uniform minimality; unconditional bases; model spaces; Paley-Wiener spaces; interpolation; one-component inner functions; interpolating sequence; Carleson condition; Carleson measures
UR - http://eudml.org/doc/116324
ER -

References

top
  1. A. B. Aleksandrov, On embedding theorems for coinvariant subspaces of the shift operator. II, J. Math. Sci., New York 110 (1999), 2907-2929 Zbl1060.30043MR1734326
  2. Eric Amar, On interpolation of interpolating sequences, Indag. Math. (N.S.) 18 (2007), 177-187 Zbl1140.32004MR2352673
  3. Eric Amar, On linear extension for interpolating sequences, Stud. Math. 186 (2008), 251-265 Zbl1206.42022MR2403667
  4. Arne Beurling, The collected works of Arne Beurling. Volume 1: Complex analysis. Volume 2: Harmonic analysis. Ed. by Lennart Carleson, Paul Malliavin, John Neuberger, John Wermer, (1989), Contemporary Mathematicians. Boston etc.: Birkhäuser Verlag. xx, 475 p./v.1; xx, 389 p./v.2 Zbl0732.01042MR1057613
  5. Inna Boricheva, Geometric properties of projections of reproducing kernels on z * -invariant subspaces of H 2 , J. Funct. Anal. 161 (1999), 397-417 Zbl0939.30005MR1674647
  6. Lennart Carleson, An interpolation problem for bounded analytic functions, Amer. J. Math. 80 (1958), 921-930 Zbl0085.06504MR117349
  7. Lennart Carleson, Interpolations by bounded analytic functions and the corona problem, Ann. of Math. (2) 76 (1962), 547-559 Zbl0112.29702MR141789
  8. Bill Cohn, Carleson measures for functions orthogonal to invariant subspaces, Pacific J. Math. 103 (1982), 347-364 Zbl0509.30026MR705235
  9. Kristin M. Flornes, Sampling and interpolation in the Paley-Wiener spaces L π p , 0 &lt; p 1 , Publ. Mat. 42 (1998), 103-118 Zbl0937.42016MR1628146
  10. Andreas Hartmann, Donald Sarason, Kristian Seip, Surjective Toeplitz operators, Acta Sci. Math. (Szeged) 70 (2004), 609-621 Zbl1076.30038MR2107530
  11. S. V. Hruščëv, N. K. Nikolskiĭ, B. S. Pavlov, Unconditional bases of exponentials and of reproducing kernels, Complex analysis and spectral theory (Leningrad, 1979/1980) 864 (1981), 214-335, Springer, Berlin Zbl0466.46018MR643384
  12. B. Ya. Levin, Lectures on entire functions, 150 (1996), American Mathematical Society, Providence, RI Zbl0856.30001MR1400006
  13. J. Lindenstrauss, M. Zippin, Banach spaces with a unique unconditional basis, J. Functional Analysis 3 (1969), 115-125 Zbl0174.17201MR236668
  14. Joram Lindenstrauss, Lior Tzafriri, Classical Banach spaces. I: Sequence spaces. II. Function spaces. Repr. of the 1977 and 1979 ed., (1996), Classics in Mathematics. Berlin: Springer-Verlag. xx, 432 p. Zbl0852.46015MR500056
  15. Yurii I. Lyubarskii, Kristian Seip, Complete interpolating sequences for Paley-Wiener spaces and Muckenhoupt’s ( A p ) condition, Rev. Mat. Iberoamericana 13 (1997), 361-376 Zbl0918.42003MR1617649
  16. A. M. Minkin, The reflection of indices and unconditional bases of exponentials, Algebra i Analiz 3 (1991), 109-134 Zbl0774.42022MR1186238
  17. N. K. Nikolskiĭ, Bases of invariant subspaces and operator interpolation, Trudy Mat. Inst. Steklov. 130 (1978), 50-123, 223 Zbl0461.46012MR505684
  18. N. K. Nikolskiĭ, Treatise on the shift operator, 273 (1986), Springer-Verlag, Berlin Zbl0587.47036MR827223
  19. N. K. Nikolskiĭ, Operators, functions, and systems: an easy reading, (2002), American Mathematical Society, Providence, RI Zbl1007.47001
  20. A. Pełczyński, Projections in certain Banach spaces, Studia Math. 19 (1960), 209-228 Zbl0104.08503MR126145
  21. Richard Rochberg, Toeplitz operators on weighted H p spaces, Indiana Univ. Math. J. 26 (1977), 291-298 Zbl0373.47018MR458228
  22. Haskell P. Rosenthal, On the subspaces of L p ( p &gt; 2 ) spanned by sequences of independent random variables, Israel J. Math. 8 (1970), 273-303 Zbl0213.19303MR271721
  23. Alexander P. Schuster, Kristian Seip, A Carleson-type condition for interpolation in Bergman spaces, J. Reine Angew. Math. 497 (1998), 223-233 Zbl0916.30037MR1617432
  24. Alexander P. Schuster, Kristian Seip, Weak conditions for interpolation in holomorphic spaces, Publ. Mat. 44 (2000), 277-293 Zbl0962.30029MR1775765
  25. Kristian Seip, On the connection between exponential bases and certain related sequences in L 2 ( - π , π ) , J. Funct. Anal. 130 (1995), 131-160 Zbl0872.46006MR1331980
  26. H. S. Shapiro, A. L. Shields, On some interpolation problems for analytic functions, Amer. J. Math. 83 (1961), 513-532 Zbl0112.29701MR133446
  27. Ivan Singer, Bases in Banach spaces. I, (1970), Springer-Verlag, New York Zbl0198.16601MR298399
  28. S. R. Treil, A. L. Volberg, Weighted embeddings and weighted norm inequalities for the Hilbert transform and the maximal operator, Algebra i Analiz 7 (1995), 205-226 Zbl0852.42006MR1381983

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.