Uniform minimality, unconditionality and interpolation in backward shift invariant subspaces
Eric Amar[1]; Andreas Hartmann[1]
- [1] Université Bordeaux I Institut de Mathématiques Équipe d’Analyse & Géométrie 351 cours de la Libération 33405 Talence (France)
Annales de l’institut Fourier (2010)
- Volume: 60, Issue: 6, page 1871-1903
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topAmar, Eric, and Hartmann, Andreas. "Uniform minimality, unconditionality and interpolation in backward shift invariant subspaces." Annales de l’institut Fourier 60.6 (2010): 1871-1903. <http://eudml.org/doc/116324>.
@article{Amar2010,
abstract = {We discuss relations between uniform minimality, unconditionality and interpolation for families of reproducing kernels in backward shift invariant subspaces. This class of spaces contains as prominent examples the Paley-Wiener spaces for which it is known that uniform minimality does in general neither imply interpolation nor unconditionality. Hence, contrarily to the situation of standard Hardy spaces (and of other scales of spaces), changing the size of the space seems necessary to deduce unconditionality or interpolation from uniform minimality. Such a change can take two directions: lowering the power of integration, or “increasing” the defining inner function (e.g. increasing the type in the case of Paley-Wiener space). Khinchin’s inequalities play a substantial role in the proofs of our main results.},
affiliation = {Université Bordeaux I Institut de Mathématiques Équipe d’Analyse & Géométrie 351 cours de la Libération 33405 Talence (France); Université Bordeaux I Institut de Mathématiques Équipe d’Analyse & Géométrie 351 cours de la Libération 33405 Talence (France)},
author = {Amar, Eric, Hartmann, Andreas},
journal = {Annales de l’institut Fourier},
keywords = {Uniform minimality; unconditional bases; model spaces; Paley-Wiener spaces; interpolation; one-component inner functions; interpolating sequence; Carleson condition; Carleson measures},
language = {eng},
number = {6},
pages = {1871-1903},
publisher = {Association des Annales de l’institut Fourier},
title = {Uniform minimality, unconditionality and interpolation in backward shift invariant subspaces},
url = {http://eudml.org/doc/116324},
volume = {60},
year = {2010},
}
TY - JOUR
AU - Amar, Eric
AU - Hartmann, Andreas
TI - Uniform minimality, unconditionality and interpolation in backward shift invariant subspaces
JO - Annales de l’institut Fourier
PY - 2010
PB - Association des Annales de l’institut Fourier
VL - 60
IS - 6
SP - 1871
EP - 1903
AB - We discuss relations between uniform minimality, unconditionality and interpolation for families of reproducing kernels in backward shift invariant subspaces. This class of spaces contains as prominent examples the Paley-Wiener spaces for which it is known that uniform minimality does in general neither imply interpolation nor unconditionality. Hence, contrarily to the situation of standard Hardy spaces (and of other scales of spaces), changing the size of the space seems necessary to deduce unconditionality or interpolation from uniform minimality. Such a change can take two directions: lowering the power of integration, or “increasing” the defining inner function (e.g. increasing the type in the case of Paley-Wiener space). Khinchin’s inequalities play a substantial role in the proofs of our main results.
LA - eng
KW - Uniform minimality; unconditional bases; model spaces; Paley-Wiener spaces; interpolation; one-component inner functions; interpolating sequence; Carleson condition; Carleson measures
UR - http://eudml.org/doc/116324
ER -
References
top- A. B. Aleksandrov, On embedding theorems for coinvariant subspaces of the shift operator. II, J. Math. Sci., New York 110 (1999), 2907-2929 Zbl1060.30043MR1734326
- Eric Amar, On interpolation of interpolating sequences, Indag. Math. (N.S.) 18 (2007), 177-187 Zbl1140.32004MR2352673
- Eric Amar, On linear extension for interpolating sequences, Stud. Math. 186 (2008), 251-265 Zbl1206.42022MR2403667
- Arne Beurling, The collected works of Arne Beurling. Volume 1: Complex analysis. Volume 2: Harmonic analysis. Ed. by Lennart Carleson, Paul Malliavin, John Neuberger, John Wermer, (1989), Contemporary Mathematicians. Boston etc.: Birkhäuser Verlag. xx, 475 p./v.1; xx, 389 p./v.2 Zbl0732.01042MR1057613
- Inna Boricheva, Geometric properties of projections of reproducing kernels on -invariant subspaces of , J. Funct. Anal. 161 (1999), 397-417 Zbl0939.30005MR1674647
- Lennart Carleson, An interpolation problem for bounded analytic functions, Amer. J. Math. 80 (1958), 921-930 Zbl0085.06504MR117349
- Lennart Carleson, Interpolations by bounded analytic functions and the corona problem, Ann. of Math. (2) 76 (1962), 547-559 Zbl0112.29702MR141789
- Bill Cohn, Carleson measures for functions orthogonal to invariant subspaces, Pacific J. Math. 103 (1982), 347-364 Zbl0509.30026MR705235
- Kristin M. Flornes, Sampling and interpolation in the Paley-Wiener spaces , Publ. Mat. 42 (1998), 103-118 Zbl0937.42016MR1628146
- Andreas Hartmann, Donald Sarason, Kristian Seip, Surjective Toeplitz operators, Acta Sci. Math. (Szeged) 70 (2004), 609-621 Zbl1076.30038MR2107530
- S. V. Hruščëv, N. K. Nikolskiĭ, B. S. Pavlov, Unconditional bases of exponentials and of reproducing kernels, Complex analysis and spectral theory (Leningrad, 1979/1980) 864 (1981), 214-335, Springer, Berlin Zbl0466.46018MR643384
- B. Ya. Levin, Lectures on entire functions, 150 (1996), American Mathematical Society, Providence, RI Zbl0856.30001MR1400006
- J. Lindenstrauss, M. Zippin, Banach spaces with a unique unconditional basis, J. Functional Analysis 3 (1969), 115-125 Zbl0174.17201MR236668
- Joram Lindenstrauss, Lior Tzafriri, Classical Banach spaces. I: Sequence spaces. II. Function spaces. Repr. of the 1977 and 1979 ed., (1996), Classics in Mathematics. Berlin: Springer-Verlag. xx, 432 p. Zbl0852.46015MR500056
- Yurii I. Lyubarskii, Kristian Seip, Complete interpolating sequences for Paley-Wiener spaces and Muckenhoupt’s condition, Rev. Mat. Iberoamericana 13 (1997), 361-376 Zbl0918.42003MR1617649
- A. M. Minkin, The reflection of indices and unconditional bases of exponentials, Algebra i Analiz 3 (1991), 109-134 Zbl0774.42022MR1186238
- N. K. Nikolskiĭ, Bases of invariant subspaces and operator interpolation, Trudy Mat. Inst. Steklov. 130 (1978), 50-123, 223 Zbl0461.46012MR505684
- N. K. Nikolskiĭ, Treatise on the shift operator, 273 (1986), Springer-Verlag, Berlin Zbl0587.47036MR827223
- N. K. Nikolskiĭ, Operators, functions, and systems: an easy reading, (2002), American Mathematical Society, Providence, RI Zbl1007.47001
- A. Pełczyński, Projections in certain Banach spaces, Studia Math. 19 (1960), 209-228 Zbl0104.08503MR126145
- Richard Rochberg, Toeplitz operators on weighted spaces, Indiana Univ. Math. J. 26 (1977), 291-298 Zbl0373.47018MR458228
- Haskell P. Rosenthal, On the subspaces of spanned by sequences of independent random variables, Israel J. Math. 8 (1970), 273-303 Zbl0213.19303MR271721
- Alexander P. Schuster, Kristian Seip, A Carleson-type condition for interpolation in Bergman spaces, J. Reine Angew. Math. 497 (1998), 223-233 Zbl0916.30037MR1617432
- Alexander P. Schuster, Kristian Seip, Weak conditions for interpolation in holomorphic spaces, Publ. Mat. 44 (2000), 277-293 Zbl0962.30029MR1775765
- Kristian Seip, On the connection between exponential bases and certain related sequences in , J. Funct. Anal. 130 (1995), 131-160 Zbl0872.46006MR1331980
- H. S. Shapiro, A. L. Shields, On some interpolation problems for analytic functions, Amer. J. Math. 83 (1961), 513-532 Zbl0112.29701MR133446
- Ivan Singer, Bases in Banach spaces. I, (1970), Springer-Verlag, New York Zbl0198.16601MR298399
- S. R. Treil, A. L. Volberg, Weighted embeddings and weighted norm inequalities for the Hilbert transform and the maximal operator, Algebra i Analiz 7 (1995), 205-226 Zbl0852.42006MR1381983
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.