# Complete interpolating sequences for Paley-Wiener spaces and Muckenhoupt's (Ap) condition.

Yurii I. Lyubarskii; Kristian Seip

Revista Matemática Iberoamericana (1997)

- Volume: 13, Issue: 2, page 361-376
- ISSN: 0213-2230

## Access Full Article

top## Abstract

top## How to cite

topLyubarskii, Yurii I., and Seip, Kristian. "Complete interpolating sequences for Paley-Wiener spaces and Muckenhoupt's (Ap) condition.." Revista Matemática Iberoamericana 13.2 (1997): 361-376. <http://eudml.org/doc/39539>.

@article{Lyubarskii1997,

abstract = {We describe the complete interpolating sequences for the Paley-Wiener spaces Lπp (1 < p < ∞) in terms of Muckenhoupt's (Ap) condition. For p = 2, this description coincides with those given by Pavlov [9], Nikol'skii [8] and Minkin [7] of the unconditional bases of complex exponentials in L2(-π,π). While the techniques of these authors are linked to the Hilbert space geometry of Lπ2, our method of proof is based in turning the problem into one about boundedness of the Hilbert transform in certain weighted Lp spaces of functions and sequences.},

author = {Lyubarskii, Yurii I., Seip, Kristian},

journal = {Revista Matemática Iberoamericana},

keywords = {Transformada de Hilbert; Espacios LP; Espacios de Banach; Funciones medibles; Interpolación; Paley-Wiener spaces; Hilbert transform; interpolating sequences},

language = {eng},

number = {2},

pages = {361-376},

title = {Complete interpolating sequences for Paley-Wiener spaces and Muckenhoupt's (Ap) condition.},

url = {http://eudml.org/doc/39539},

volume = {13},

year = {1997},

}

TY - JOUR

AU - Lyubarskii, Yurii I.

AU - Seip, Kristian

TI - Complete interpolating sequences for Paley-Wiener spaces and Muckenhoupt's (Ap) condition.

JO - Revista Matemática Iberoamericana

PY - 1997

VL - 13

IS - 2

SP - 361

EP - 376

AB - We describe the complete interpolating sequences for the Paley-Wiener spaces Lπp (1 < p < ∞) in terms of Muckenhoupt's (Ap) condition. For p = 2, this description coincides with those given by Pavlov [9], Nikol'skii [8] and Minkin [7] of the unconditional bases of complex exponentials in L2(-π,π). While the techniques of these authors are linked to the Hilbert space geometry of Lπ2, our method of proof is based in turning the problem into one about boundedness of the Hilbert transform in certain weighted Lp spaces of functions and sequences.

LA - eng

KW - Transformada de Hilbert; Espacios LP; Espacios de Banach; Funciones medibles; Interpolación; Paley-Wiener spaces; Hilbert transform; interpolating sequences

UR - http://eudml.org/doc/39539

ER -

## Citations in EuDML Documents

top- Gennadii Chistyakov, Yura Lyubarskii, Random perturbations of exponential Riesz bases in ${L}^{2}(-\pi ,\pi )$
- Anton Baranov, Stability of the bases and frames reproducing kernels in model spaces
- Eric Amar, Andreas Hartmann, Uniform minimality, unconditionality and interpolation in backward shift invariant subspaces

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.