Complete interpolating sequences for Paley-Wiener spaces and Muckenhoupt's (Ap) condition.
Yurii I. Lyubarskii; Kristian Seip
Revista Matemática Iberoamericana (1997)
- Volume: 13, Issue: 2, page 361-376
- ISSN: 0213-2230
Access Full Article
topAbstract
topHow to cite
topLyubarskii, Yurii I., and Seip, Kristian. "Complete interpolating sequences for Paley-Wiener spaces and Muckenhoupt's (Ap) condition.." Revista Matemática Iberoamericana 13.2 (1997): 361-376. <http://eudml.org/doc/39539>.
@article{Lyubarskii1997,
abstract = {We describe the complete interpolating sequences for the Paley-Wiener spaces Lπp (1 < p < ∞) in terms of Muckenhoupt's (Ap) condition. For p = 2, this description coincides with those given by Pavlov [9], Nikol'skii [8] and Minkin [7] of the unconditional bases of complex exponentials in L2(-π,π). While the techniques of these authors are linked to the Hilbert space geometry of Lπ2, our method of proof is based in turning the problem into one about boundedness of the Hilbert transform in certain weighted Lp spaces of functions and sequences.},
author = {Lyubarskii, Yurii I., Seip, Kristian},
journal = {Revista Matemática Iberoamericana},
keywords = {Transformada de Hilbert; Espacios LP; Espacios de Banach; Funciones medibles; Interpolación; Paley-Wiener spaces; Hilbert transform; interpolating sequences},
language = {eng},
number = {2},
pages = {361-376},
title = {Complete interpolating sequences for Paley-Wiener spaces and Muckenhoupt's (Ap) condition.},
url = {http://eudml.org/doc/39539},
volume = {13},
year = {1997},
}
TY - JOUR
AU - Lyubarskii, Yurii I.
AU - Seip, Kristian
TI - Complete interpolating sequences for Paley-Wiener spaces and Muckenhoupt's (Ap) condition.
JO - Revista Matemática Iberoamericana
PY - 1997
VL - 13
IS - 2
SP - 361
EP - 376
AB - We describe the complete interpolating sequences for the Paley-Wiener spaces Lπp (1 < p < ∞) in terms of Muckenhoupt's (Ap) condition. For p = 2, this description coincides with those given by Pavlov [9], Nikol'skii [8] and Minkin [7] of the unconditional bases of complex exponentials in L2(-π,π). While the techniques of these authors are linked to the Hilbert space geometry of Lπ2, our method of proof is based in turning the problem into one about boundedness of the Hilbert transform in certain weighted Lp spaces of functions and sequences.
LA - eng
KW - Transformada de Hilbert; Espacios LP; Espacios de Banach; Funciones medibles; Interpolación; Paley-Wiener spaces; Hilbert transform; interpolating sequences
UR - http://eudml.org/doc/39539
ER -
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.