Homomorphisms to constructed from random walks

Anna Erschler[1]; Anders Karlsson[2]

  • [1] Université Paris Sud Laboratoire de Mathématiques d’Orsay Bâtiment 425 91405 Orsay Cedex (France)
  • [2] Université de Genève Section de mathématiques 2-4 rue du Lièvre Case postale 64 1211 Genève 4 (Suisse)

Annales de l’institut Fourier (2010)

  • Volume: 60, Issue: 6, page 2095-2113
  • ISSN: 0373-0956

Abstract

top
We give a construction of homomorphisms from a group into the reals using random walks on the group. The construction is an alternative to an earlier construction that works in more general situations. Applications include an estimate on the drift of random walks on groups of subexponential growth admitting no nontrivial homomorphism to the integers and inequalities between the asymptotic drift and the asymptotic entropy. Some of the entropy estimates obtained have applications independent of the homomorphism construction, for example a Liouville-type theorem for slowly growing harmonic functions on groups of subexponential growth and on some groups of exponential growth.

How to cite

top

Erschler, Anna, and Karlsson, Anders. "Homomorphisms to $\mathbb{R}$ constructed from random walks." Annales de l’institut Fourier 60.6 (2010): 2095-2113. <http://eudml.org/doc/116326>.

@article{Erschler2010,
abstract = {We give a construction of homomorphisms from a group into the reals using random walks on the group. The construction is an alternative to an earlier construction that works in more general situations. Applications include an estimate on the drift of random walks on groups of subexponential growth admitting no nontrivial homomorphism to the integers and inequalities between the asymptotic drift and the asymptotic entropy. Some of the entropy estimates obtained have applications independent of the homomorphism construction, for example a Liouville-type theorem for slowly growing harmonic functions on groups of subexponential growth and on some groups of exponential growth.},
affiliation = {Université Paris Sud Laboratoire de Mathématiques d’Orsay Bâtiment 425 91405 Orsay Cedex (France); Université de Genève Section de mathématiques 2-4 rue du Lièvre Case postale 64 1211 Genève 4 (Suisse)},
author = {Erschler, Anna, Karlsson, Anders},
journal = {Annales de l’institut Fourier},
keywords = {Random walks on groups; Liouville type theorems; growth of harmonic functions; homomorphisms to $\mathbb\{R\}$; groups of intermediate growth; entropy; drift; Gaussian estimates; random walks on groups; homomorphisms to },
language = {eng},
number = {6},
pages = {2095-2113},
publisher = {Association des Annales de l’institut Fourier},
title = {Homomorphisms to $\mathbb\{R\}$ constructed from random walks},
url = {http://eudml.org/doc/116326},
volume = {60},
year = {2010},
}

TY - JOUR
AU - Erschler, Anna
AU - Karlsson, Anders
TI - Homomorphisms to $\mathbb{R}$ constructed from random walks
JO - Annales de l’institut Fourier
PY - 2010
PB - Association des Annales de l’institut Fourier
VL - 60
IS - 6
SP - 2095
EP - 2113
AB - We give a construction of homomorphisms from a group into the reals using random walks on the group. The construction is an alternative to an earlier construction that works in more general situations. Applications include an estimate on the drift of random walks on groups of subexponential growth admitting no nontrivial homomorphism to the integers and inequalities between the asymptotic drift and the asymptotic entropy. Some of the entropy estimates obtained have applications independent of the homomorphism construction, for example a Liouville-type theorem for slowly growing harmonic functions on groups of subexponential growth and on some groups of exponential growth.
LA - eng
KW - Random walks on groups; Liouville type theorems; growth of harmonic functions; homomorphisms to $\mathbb{R}$; groups of intermediate growth; entropy; drift; Gaussian estimates; random walks on groups; homomorphisms to
UR - http://eudml.org/doc/116326
ER -

References

top
  1. A. Avez, Harmonic functions on groups, Differential geometry and relativity (1976), 27-32. Mathematical Phys. and Appl. Math., Vol. 3, Reidel, Dordrecht Zbl0345.31004MR507229
  2. André Avez, Entropie des groupes de type fini, C. R. Acad. Sci. Paris Sér. A-B 275 (1972), A1363-A1366 Zbl0252.94013MR324741
  3. Laurent Bartholdi, Bálint Virág, Amenability via random walks, Duke Math. J. 130 (2005), 39-56 Zbl1104.43002MR2176547
  4. Rufus Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms, (1975), Springer-Verlag, Berlin Zbl0308.28010MR442989
  5. Thomas Keith Carne, A transmutation formula for Markov chains, Bull. Sci. Math. (2) 109 (1985), 399-405 Zbl0584.60078MR837740
  6. Yves Derriennic, Quelques applications du théorème ergodique sous-additif, Conference on Random Walks (Kleebach, 1979) (French) 74 (1980), 183-201, Soc. Math. France, Paris Zbl0446.60059MR588163
  7. Nick Dungey, Properties of random walks on discrete groups: time regularity and off-diagonal estimates, Bull. Sci. Math. 132 (2008), 359-381 Zbl1158.60001MR2426641
  8. Anna Erschler, On drift and entropy growth for random walks on groups, Ann. Probab. 31 (2003), 1193-1204 Zbl1043.60005MR1988468
  9. Anna Erschler, Boundary behavior for groups of subexponential growth, Ann. of Math. (2) 160 (2004), 1183-1210 Zbl1089.20025MR2144977
  10. Anna Erschler, Critical constants for recurrence of random walks on G -spaces, Ann. Inst. Fourier (Grenoble) 55 (2005), 493-509 Zbl1133.20031MR2147898
  11. Anna Erschler, Piecewise automatic groups, Duke Math. J. 134 (2006), 591-613 Zbl1159.20019MR2254627
  12. R. I. Grigorchuk, Degrees of growth of finitely generated groups and the theory of invariant means, Math USSSR-Izv. 25 (1985), 259-300 Zbl0583.20023MR764305
  13. Y. Guivarc’h, Sur la loi des grands nombres et le rayon spectral d’une marche aléatoire, Conference on Random Walks (Kleebach, 1979) (French) 74 (1980), 47-98, Soc. Math. France, Paris Zbl0448.60007MR588157
  14. W. Hebisch, L. Saloff-Coste, Gaussian estimates for Markov chains and random walks on groups, Ann. Probab. 21 (1993), 673-709 Zbl0776.60086MR1217561
  15. Vadim A. Kaĭmanovich, “Münchhausen trick” and amenability of self-similar groups, Internat. J. Algebra Comput. 15 (2005), 907-937 Zbl1168.20308MR2197814
  16. Vadim A. Kaĭmanovich, A. M. Vershik, Random walks on discrete groups: boundary and entropy, Ann. Probab. 11 (1983), 457-490 Zbl0641.60009MR704539
  17. Anders Karlsson, François Ledrappier, Linear drift and Poisson boundary for random walks, Pure Appl. Math. Q. 3 (2007), 1027-1036 Zbl1142.60035MR2402595
  18. Pierre Mathieu, Carne-Varopoulos bounds for centered random walks, Ann. Probab. 34 (2006), 987-1011 Zbl1099.60049MR2243876
  19. Rémi Peyre, A probabilistic approach to Carne’s bound, Potential Anal. 29 (2008), 17-36 Zbl1143.60045MR2421492
  20. David Revelle, Balint Virag, (2005) 
  21. Nicholas Th. Varopoulos, Long range estimates for Markov chains, Bull. Sci. Math. (2) 109 (1985), 225-252 Zbl0583.60063MR822826

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.