Critical constants for recurrence of random walks on G -spaces

Anna Erschler[1]

  • [1] Université Lille 1, UFR de Mathématiques, 59655 Villeneuve d'Ascq Cedex (FRANCE)

Annales de l’institut Fourier (2005)

  • Volume: 55, Issue: 2, page 493-509
  • ISSN: 0373-0956

Abstract

top
We introduce the notion of a critical constant c r t for recurrence of random walks on G -spaces. For a subgroup H of a finitely generated group G the critical constant is an asymptotic invariant of the quotient G -space G / H . We show that for any infinite G -space c r t 1 / 2 . We say that G / H is very small if c r t < 1 . For a normal subgroup H the quotient space G / H is very small if and only if it is finite. However, we give examples of infinite very small G -spaces. We show also that critical constants for recurrence can be used to estimate the growth of groups as well as the drift for random walks on groups.

How to cite

top

Erschler, Anna. "Critical constants for recurrence of random walks on $G$-spaces." Annales de l’institut Fourier 55.2 (2005): 493-509. <http://eudml.org/doc/116198>.

@article{Erschler2005,
abstract = {We introduce the notion of a critical constant $c_\{rt\}$ for recurrence of random walks on $G$-spaces. For a subgroup $H$ of a finitely generated group $G$ the critical constant is an asymptotic invariant of the quotient $G$-space $G/H$. We show that for any infinite $G$-space $c_\{rt\} \ge 1/2$. We say that $G/H$ is very small if $c_\{rt\}&lt;1$. For a normal subgroup $H$ the quotient space $G/H$ is very small if and only if it is finite. However, we give examples of infinite very small $G$-spaces. We show also that critical constants for recurrence can be used to estimate the growth of groups as well as the drift for random walks on groups.},
affiliation = {Université Lille 1, UFR de Mathématiques, 59655 Villeneuve d'Ascq Cedex (FRANCE)},
author = {Erschler, Anna},
journal = {Annales de l’institut Fourier},
keywords = {growth of groups; Grigorchuk groups; branch groups; random walks; recurrence; drift; random walks on discrete groups; asymptotic invariants; asymptotic behavior; drift growth; entropy growth},
language = {eng},
number = {2},
pages = {493-509},
publisher = {Association des Annales de l'Institut Fourier},
title = {Critical constants for recurrence of random walks on $G$-spaces},
url = {http://eudml.org/doc/116198},
volume = {55},
year = {2005},
}

TY - JOUR
AU - Erschler, Anna
TI - Critical constants for recurrence of random walks on $G$-spaces
JO - Annales de l’institut Fourier
PY - 2005
PB - Association des Annales de l'Institut Fourier
VL - 55
IS - 2
SP - 493
EP - 509
AB - We introduce the notion of a critical constant $c_{rt}$ for recurrence of random walks on $G$-spaces. For a subgroup $H$ of a finitely generated group $G$ the critical constant is an asymptotic invariant of the quotient $G$-space $G/H$. We show that for any infinite $G$-space $c_{rt} \ge 1/2$. We say that $G/H$ is very small if $c_{rt}&lt;1$. For a normal subgroup $H$ the quotient space $G/H$ is very small if and only if it is finite. However, we give examples of infinite very small $G$-spaces. We show also that critical constants for recurrence can be used to estimate the growth of groups as well as the drift for random walks on groups.
LA - eng
KW - growth of groups; Grigorchuk groups; branch groups; random walks; recurrence; drift; random walks on discrete groups; asymptotic invariants; asymptotic behavior; drift growth; entropy growth
UR - http://eudml.org/doc/116198
ER -

References

top
  1. A. Avez, Entropie des groupes de type fini, C. R. Acad. Sc. Paris, Sér. A 275 (1972), 1363-1366 Zbl0252.94013MR324741
  2. A. Avez, Théorème de Choquet-Deny pour les groupes à croissance non exponentielle, C. R. Acad. Sci. Paris, Sér. A 279 (1974), 25-28 Zbl0292.60100MR353405
  3. A. Avez, Croissance des groupes de type fini et fonctions harmoniques, Théorie ergodique, Actes Journées Ergodiques, Rennes, 1973/1974 532 (1976), 35-49, Springer, Berlin, Berlin Zbl0368.60011
  4. A. Avez, Harmonic functions on groups, Differential geometry and relativity, 3 (1976), 27-32, Reidel, Dordrecht Zbl0345.31004
  5. L. Bartholdi, The growth of Grigorchuk's torsion group, Internat. Math. Res. Notices (1998), 1049-1054 Zbl0942.20027MR1656258
  6. L. Bartholdi, Lower bounds on the growth of a group acting on the binary rooted tree, Internat. J. Algebra Comput. 11 (2001), 73-88 Zbl1028.20025MR1818662
  7. P. Baldi, N. Lohoué, J. Peyrière, Sur la classification des groupes récurrents, C. R. Acad. Sci. Paris, Sér. A-B 285 (1987) Zbl0376.60072MR518008
  8. Y. Derriennic, Quelques applications du théorème ergodique sous-additif, 74 (1980), 183-201 Zbl0446.60059
  9. A. Dyubina, An example of growth rate for random walk on group, Russian Math. Surveys 54 (1999), 159-160 Zbl0964.60506MR1741670
  10. A. Erschler (Dyubina), On the asymptotics of drift, Zapiski Sem. POMI 283 (2001), 251-257 Zbl1069.60043
  11. A. Erschler (Dyubina), Drift and entropy growth for random walk on groups, Russian Math. Surveys 56 (2001), 179-180 Zbl1026.60004MR1859741
  12. A. Erschler, Boundary behavior for groups of subexponetial growth Zbl1089.20025
  13. A. Erschler, Drift and entropy growth for random walks on groups, Annals of Probability 31 (2003), 1193-1204 Zbl1043.60005MR1988468
  14. W. Feller, An introduction to probability theory and its applications II, (1971), John Wiley and Sons, New York Zbl0219.60003MR270403
  15. R. I. Grigorchuk, On Burnside's problem on periodic groups, Funct. Anal. Appl., 14 (1980), 41-43 Zbl0595.20029
  16. R. I. Grigorchuk, Degrees of growth of finitely generated groups, and the theory of invariant mean, Math USSR Izv 25 (1985), 259-300 Zbl0583.20023MR764305
  17. R. I. Grigorchuk, Groups with intermediate growth function and their applications, (1985) 
  18. Y. Guivarch, Sur la loi des grands nombres et le rayon spectral d'une marche aléatoire, 74 (1980), 47-98, Soc. Math. France, Paris Zbl0448.60007
  19. Y. Guivarch, Marches aléatoires sur les groupes, 1950-2000, Birkhauser Zbl0967.60057
  20. V. A. Kaimanovich, A. M. Vershik, Random walks on discrete groups: boundary and entropy, The Annals of Probability 11 (1983), 457-490 Zbl0641.60009MR704539
  21. Yu. G. Leonov, Yu. G., On a lower bound for the growth of a 3-generator 2-group, Mat. Sb. 192 (2001), 77-92 Zbl1031.20024MR1886371
  22. A. Lubotzky, Cayley graphs: eigenvalues, expanders and random walks, (1995), 155-189, Cambridge Univ. Press Zbl0835.05033
  23. R. Muchnik, I. Pak, On growth of Grigorchuk groups, Internat. J. Algebra Comput. 11 (2001), 1-17 Zbl1024.20031MR1818659
  24. F. Spitzer, Principles of random walk, (1964), Van Nostrand, Princeton Zbl0119.34304MR171290
  25. N. Th. Varoupoulos, Théorie du potentiel sur des groupes et variétés, C. R. Acad. Sci. Paris, Série I 302 (1986), 203-205 Zbl0605.31005MR832044
  26. N. Th. Varopoulos, L. Saloff-Coste, T. Coulhon, Analysis and geometry on groups, 100 (1992), Cambridge University Press, Cambridge Zbl0813.22003MR1218884
  27. W. Woess, Random walks on infinite graphs and groups, (2000), Cambr. Univ. Press Zbl0951.60002MR1743100

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.