Critical constants for recurrence of random walks on -spaces
- [1] Université Lille 1, UFR de Mathématiques, 59655 Villeneuve d'Ascq Cedex (FRANCE)
Annales de l’institut Fourier (2005)
- Volume: 55, Issue: 2, page 493-509
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topErschler, Anna. "Critical constants for recurrence of random walks on $G$-spaces." Annales de l’institut Fourier 55.2 (2005): 493-509. <http://eudml.org/doc/116198>.
@article{Erschler2005,
abstract = {We introduce the notion of a critical constant $c_\{rt\}$ for recurrence of random walks on
$G$-spaces. For a subgroup $H$ of a finitely generated group $G$ the critical constant is
an asymptotic invariant of the quotient $G$-space $G/H$. We show that for any infinite
$G$-space $c_\{rt\} \ge 1/2$. We say that $G/H$ is very small if $c_\{rt\}<1$. For a
normal subgroup $H$ the quotient space $G/H$ is very small if and only if it is finite.
However, we give examples of infinite very small $G$-spaces. We show also that critical
constants for recurrence can be used to estimate the growth of groups as well as the
drift for random walks on groups.},
affiliation = {Université Lille 1, UFR de Mathématiques, 59655 Villeneuve d'Ascq Cedex (FRANCE)},
author = {Erschler, Anna},
journal = {Annales de l’institut Fourier},
keywords = {growth of groups; Grigorchuk groups; branch groups; random walks; recurrence; drift; random walks on discrete groups; asymptotic invariants; asymptotic behavior; drift growth; entropy growth},
language = {eng},
number = {2},
pages = {493-509},
publisher = {Association des Annales de l'Institut Fourier},
title = {Critical constants for recurrence of random walks on $G$-spaces},
url = {http://eudml.org/doc/116198},
volume = {55},
year = {2005},
}
TY - JOUR
AU - Erschler, Anna
TI - Critical constants for recurrence of random walks on $G$-spaces
JO - Annales de l’institut Fourier
PY - 2005
PB - Association des Annales de l'Institut Fourier
VL - 55
IS - 2
SP - 493
EP - 509
AB - We introduce the notion of a critical constant $c_{rt}$ for recurrence of random walks on
$G$-spaces. For a subgroup $H$ of a finitely generated group $G$ the critical constant is
an asymptotic invariant of the quotient $G$-space $G/H$. We show that for any infinite
$G$-space $c_{rt} \ge 1/2$. We say that $G/H$ is very small if $c_{rt}<1$. For a
normal subgroup $H$ the quotient space $G/H$ is very small if and only if it is finite.
However, we give examples of infinite very small $G$-spaces. We show also that critical
constants for recurrence can be used to estimate the growth of groups as well as the
drift for random walks on groups.
LA - eng
KW - growth of groups; Grigorchuk groups; branch groups; random walks; recurrence; drift; random walks on discrete groups; asymptotic invariants; asymptotic behavior; drift growth; entropy growth
UR - http://eudml.org/doc/116198
ER -
References
top- A. Avez, Entropie des groupes de type fini, C. R. Acad. Sc. Paris, Sér. A 275 (1972), 1363-1366 Zbl0252.94013MR324741
- A. Avez, Théorème de Choquet-Deny pour les groupes à croissance non exponentielle, C. R. Acad. Sci. Paris, Sér. A 279 (1974), 25-28 Zbl0292.60100MR353405
- A. Avez, Croissance des groupes de type fini et fonctions harmoniques, Théorie ergodique, Actes Journées Ergodiques, Rennes, 1973/1974 532 (1976), 35-49, Springer, Berlin, Berlin Zbl0368.60011
- A. Avez, Harmonic functions on groups, Differential geometry and relativity, 3 (1976), 27-32, Reidel, Dordrecht Zbl0345.31004
- L. Bartholdi, The growth of Grigorchuk's torsion group, Internat. Math. Res. Notices (1998), 1049-1054 Zbl0942.20027MR1656258
- L. Bartholdi, Lower bounds on the growth of a group acting on the binary rooted tree, Internat. J. Algebra Comput. 11 (2001), 73-88 Zbl1028.20025MR1818662
- P. Baldi, N. Lohoué, J. Peyrière, Sur la classification des groupes récurrents, C. R. Acad. Sci. Paris, Sér. A-B 285 (1987) Zbl0376.60072MR518008
- Y. Derriennic, Quelques applications du théorème ergodique sous-additif, 74 (1980), 183-201 Zbl0446.60059
- A. Dyubina, An example of growth rate for random walk on group, Russian Math. Surveys 54 (1999), 159-160 Zbl0964.60506MR1741670
- A. Erschler (Dyubina), On the asymptotics of drift, Zapiski Sem. POMI 283 (2001), 251-257 Zbl1069.60043
- A. Erschler (Dyubina), Drift and entropy growth for random walk on groups, Russian Math. Surveys 56 (2001), 179-180 Zbl1026.60004MR1859741
- A. Erschler, Boundary behavior for groups of subexponetial growth Zbl1089.20025
- A. Erschler, Drift and entropy growth for random walks on groups, Annals of Probability 31 (2003), 1193-1204 Zbl1043.60005MR1988468
- W. Feller, An introduction to probability theory and its applications II, (1971), John Wiley and Sons, New York Zbl0219.60003MR270403
- R. I. Grigorchuk, On Burnside's problem on periodic groups, Funct. Anal. Appl., 14 (1980), 41-43 Zbl0595.20029
- R. I. Grigorchuk, Degrees of growth of finitely generated groups, and the theory of invariant mean, Math USSR Izv 25 (1985), 259-300 Zbl0583.20023MR764305
- R. I. Grigorchuk, Groups with intermediate growth function and their applications, (1985)
- Y. Guivarch, Sur la loi des grands nombres et le rayon spectral d'une marche aléatoire, 74 (1980), 47-98, Soc. Math. France, Paris Zbl0448.60007
- Y. Guivarch, Marches aléatoires sur les groupes, 1950-2000, Birkhauser Zbl0967.60057
- V. A. Kaimanovich, A. M. Vershik, Random walks on discrete groups: boundary and entropy, The Annals of Probability 11 (1983), 457-490 Zbl0641.60009MR704539
- Yu. G. Leonov, Yu. G., On a lower bound for the growth of a 3-generator 2-group, Mat. Sb. 192 (2001), 77-92 Zbl1031.20024MR1886371
- A. Lubotzky, Cayley graphs: eigenvalues, expanders and random walks, (1995), 155-189, Cambridge Univ. Press Zbl0835.05033
- R. Muchnik, I. Pak, On growth of Grigorchuk groups, Internat. J. Algebra Comput. 11 (2001), 1-17 Zbl1024.20031MR1818659
- F. Spitzer, Principles of random walk, (1964), Van Nostrand, Princeton Zbl0119.34304MR171290
- N. Th. Varoupoulos, Théorie du potentiel sur des groupes et variétés, C. R. Acad. Sci. Paris, Série I 302 (1986), 203-205 Zbl0605.31005MR832044
- N. Th. Varopoulos, L. Saloff-Coste, T. Coulhon, Analysis and geometry on groups, 100 (1992), Cambridge University Press, Cambridge Zbl0813.22003MR1218884
- W. Woess, Random walks on infinite graphs and groups, (2000), Cambr. Univ. Press Zbl0951.60002MR1743100
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.