The C 1 invariance of the algebraic multiplicity of a holomorphic vector field

Rudy Rosas[1]

  • [1] Pontificia Universidad Católica del Perú Av Universitaria 1801 San Miguel, Lima 32 (Perú) Instituto de Matemática y Ciencias Afines (IMCA) Jr. los Biólogos 245 La Molina, Lima (Perú)

Annales de l’institut Fourier (2010)

  • Volume: 60, Issue: 6, page 2115-2135
  • ISSN: 0373-0956

Abstract

top
We prove that the algebraic multiplicity of a holomorphic vector field at an isolated singularity is invariant by C 1 equivalences.

How to cite

top

Rosas, Rudy. "The $C^1$ invariance of the algebraic multiplicity of a holomorphic vector field." Annales de l’institut Fourier 60.6 (2010): 2115-2135. <http://eudml.org/doc/116327>.

@article{Rosas2010,
abstract = {We prove that the algebraic multiplicity of a holomorphic vector field at an isolated singularity is invariant by $C^1$ equivalences.},
affiliation = {Pontificia Universidad Católica del Perú Av Universitaria 1801 San Miguel, Lima 32 (Perú) Instituto de Matemática y Ciencias Afines (IMCA) Jr. los Biólogos 245 La Molina, Lima (Perú)},
author = {Rosas, Rudy},
journal = {Annales de l’institut Fourier},
keywords = {Algebraic multiplicity; holomorphic vector field; holomorphic foliation; algebraic multiplicity},
language = {eng},
number = {6},
pages = {2115-2135},
publisher = {Association des Annales de l’institut Fourier},
title = {The $C^1$ invariance of the algebraic multiplicity of a holomorphic vector field},
url = {http://eudml.org/doc/116327},
volume = {60},
year = {2010},
}

TY - JOUR
AU - Rosas, Rudy
TI - The $C^1$ invariance of the algebraic multiplicity of a holomorphic vector field
JO - Annales de l’institut Fourier
PY - 2010
PB - Association des Annales de l’institut Fourier
VL - 60
IS - 6
SP - 2115
EP - 2135
AB - We prove that the algebraic multiplicity of a holomorphic vector field at an isolated singularity is invariant by $C^1$ equivalences.
LA - eng
KW - Algebraic multiplicity; holomorphic vector field; holomorphic foliation; algebraic multiplicity
UR - http://eudml.org/doc/116327
ER -

References

top
  1. Bers, L., Riemann surfaces, (1958), New York University Zbl0116.28803
  2. Burau, W., Kennzeichnung der schlauchknoten, Abh. Math. Sem. Ham. Univ. 9 (1932), 125-133 Zbl0006.03402
  3. Camacho, C. and Sad, P., Invariant varieties through singularities of holomorphic vector fields, Ann. Math. 115(3) (1982), 579-595 Zbl0503.32007MR657239
  4. Camacho, C. and Sad, P. and Lins, A., Topological invariants and equidesingularization for holomorphic vector fields, J. Differential Geometry 20 (1984), 143-174 Zbl0576.32020MR772129
  5. Dieudonné, J., Foundations of modern analysis, enlarged and corrected printing, (1969), Academic Press, New York Zbl0176.00502MR349288
  6. Dold, A., Lecture notes on algebraic topology, (1972), Springer, Berlin Zbl0234.55001
  7. Gomez Mont, X. and Seade, J. and Verjovsky, A., The index of a holomorphic flow with an isolated singularity, Math. Ann. 291(4) (1991), 737-751 Zbl0725.32012MR1135541
  8. Mattei, J.F. and Cerveau, D., Formes intégrables holomorphes singuliéres, (1982), Astérisque 97, Société Mathématique, Paris Zbl0545.32006MR704017
  9. Mattei, J.F. and Moussu, R., Holonomie et intégrales premiéres, Ann. Sci. École Norm. Sup.(4) 13(4) (1980), 469-523 Zbl0458.32005MR608290
  10. Milnor, J., Lecture notes on algebraic topology, (1965), University Press of Virginia, Charlottesville 
  11. Pommerenke, Ch., Boundary behaviour of conformal maps, (1992), Springer-Verlag Zbl0762.30001MR1217706
  12. Rosas, R., On the topological invariance of the algebraic multiplicity of a holomorphic vector field, (2005), Rio de Janeiro 
  13. Rudin, W., Real and complex analysis, (1979), Tata McGraw-Hill, New Delhi Zbl0925.00005
  14. Taylor, M.E., Partial Differential Equations I, (1996), Springer, New York MR1395148
  15. Zariski, O., On the topology of algebroid singularities, Amer. Journ. of Math. 54 (1932), 453-465 Zbl58.0614.02MR1507926

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.