Minimal Graphs in n × and n + 1

Ricardo Sà Earp[1]; Eric Toubiana[2]

  • [1] Pontifícia Universidade Católica do Rio de Janeiro Departamento de Matemática Rio de Janeiro, 22453-900 RJ (Brazil)
  • [2] Université Paris VII, Denis Diderot Institut de Mathématiques de Jussieu Case 7012, 2 place Jussieu 75251 Paris Cedex 05 (France)

Annales de l’institut Fourier (2010)

  • Volume: 60, Issue: 7, page 2373-2402
  • ISSN: 0373-0956

Abstract

top
We construct geometric barriers for minimal graphs in n × . We prove the existence and uniqueness of a solution of the vertical minimal equation in the interior of a convex polyhedron in n extending continuously to the interior of each face, taking infinite boundary data on one face and zero boundary value data on the other faces.In n × , we solve the Dirichlet problem for the vertical minimal equation in a C 0 convex domain Ω n taking arbitrarily continuous finite boundary and asymptotic boundary data.We prove the existence of another Scherk type hypersurface, given by the solution of the vertical minimal equation in the interior of certain admissible polyhedron taking alternatively infinite values + and - on adjacent faces of this polyhedron.We establish analogous results for minimal graphs when the ambient is the Euclidean space n + 1 .

How to cite

top

Sà Earp, Ricardo, and Toubiana, Eric. "Minimal Graphs in $\mathbb{H}^n\times \mathbb{R}$ and $\mathbb{R}^{n+1}$." Annales de l’institut Fourier 60.7 (2010): 2373-2402. <http://eudml.org/doc/116338>.

@article{SàEarp2010,
abstract = {We construct geometric barriers for minimal graphs in $\mathbb\{H\}^n\times \mathbb\{R\}.$We prove the existence and uniqueness of a solution of the vertical minimal equation in the interior of a convex polyhedron in $\mathbb\{H\}^n$ extending continuously to the interior of each face, taking infinite boundary data on one face and zero boundary value data on the other faces.In $\mathbb\{H\}^n\times \mathbb\{R\}$, we solve the Dirichlet problem for the vertical minimal equation in a $C^0$ convex domain $\Omega \subset \mathbb\{H\}^n$ taking arbitrarily continuous finite boundary and asymptotic boundary data.We prove the existence of another Scherk type hypersurface, given by the solution of the vertical minimal equation in the interior of certain admissible polyhedron taking alternatively infinite values $+\infty $ and $-\infty $ on adjacent faces of this polyhedron.We establish analogous results for minimal graphs when the ambient is the Euclidean space $\mathbb\{R\}^\{n+1\}$.},
affiliation = {Pontifícia Universidade Católica do Rio de Janeiro Departamento de Matemática Rio de Janeiro, 22453-900 RJ (Brazil); Université Paris VII, Denis Diderot Institut de Mathématiques de Jussieu Case 7012, 2 place Jussieu 75251 Paris Cedex 05 (France)},
author = {Sà Earp, Ricardo, Toubiana, Eric},
journal = {Annales de l’institut Fourier},
keywords = {Dirichlet problem; minimal equation; vertical graph; Perron process; barrier; convex domain; asymptotic boundary; translation hypersurface; Scherk hypersurface},
language = {eng},
number = {7},
pages = {2373-2402},
publisher = {Association des Annales de l’institut Fourier},
title = {Minimal Graphs in $\mathbb\{H\}^n\times \mathbb\{R\}$ and $\mathbb\{R\}^\{n+1\}$},
url = {http://eudml.org/doc/116338},
volume = {60},
year = {2010},
}

TY - JOUR
AU - Sà Earp, Ricardo
AU - Toubiana, Eric
TI - Minimal Graphs in $\mathbb{H}^n\times \mathbb{R}$ and $\mathbb{R}^{n+1}$
JO - Annales de l’institut Fourier
PY - 2010
PB - Association des Annales de l’institut Fourier
VL - 60
IS - 7
SP - 2373
EP - 2402
AB - We construct geometric barriers for minimal graphs in $\mathbb{H}^n\times \mathbb{R}.$We prove the existence and uniqueness of a solution of the vertical minimal equation in the interior of a convex polyhedron in $\mathbb{H}^n$ extending continuously to the interior of each face, taking infinite boundary data on one face and zero boundary value data on the other faces.In $\mathbb{H}^n\times \mathbb{R}$, we solve the Dirichlet problem for the vertical minimal equation in a $C^0$ convex domain $\Omega \subset \mathbb{H}^n$ taking arbitrarily continuous finite boundary and asymptotic boundary data.We prove the existence of another Scherk type hypersurface, given by the solution of the vertical minimal equation in the interior of certain admissible polyhedron taking alternatively infinite values $+\infty $ and $-\infty $ on adjacent faces of this polyhedron.We establish analogous results for minimal graphs when the ambient is the Euclidean space $\mathbb{R}^{n+1}$.
LA - eng
KW - Dirichlet problem; minimal equation; vertical graph; Perron process; barrier; convex domain; asymptotic boundary; translation hypersurface; Scherk hypersurface
UR - http://eudml.org/doc/116338
ER -

References

top
  1. Michael T. Anderson, Complete minimal varieties in hyperbolic space, Invent. Math. 69 (1982), 477-494 Zbl0515.53042MR679768
  2. Michael T. Anderson, Complete minimal hypersurfaces in hyperbolic n -manifolds, Comment. Math. Helv. 58 (1983), 264-290 Zbl0549.53058MR705537
  3. Pierre Bérard, R. Sa Earp, Minimal hypersurfaces in n × , total curvature and index 
  4. R. Courant, D. Hilbert, Methods of mathematical physics. Vol. II, (1989), John Wiley & Sons Inc., New York Zbl0729.00007MR1013360
  5. A. Coutant, Hypersurfaces de type Scherk 
  6. R. Sa Earp, Parabolic and Hyperbolic Screw motion in 2 × , Journ. Austra. Math. Soc. 85 (2008), 113-143 Zbl1178.53060MR2460869
  7. R. Sa Earp, E. Toubiana, Existence and uniqueness of minimal graphs in hyperbolic space, Asian J. Math. 4 (2000), 669-694 Zbl0984.53005MR1796699
  8. R. Sa Earp, E. Toubiana, An asymptotic theorem for minimal surfaces and existence results for minimal graphs in 2 × , Math. Annalen 342 (2008), 309-331 Zbl1154.53039MR2425145
  9. R. Sa Earp, E. Toubiana, Introduction à la géométrie hyperbolique et aux surfaces de Riemann, Cassini (2009) Zbl1205.00010
  10. David Gilbarg, Neil S. Trudinger, Elliptic partial differential equations of second order, 224 (1983), Springer-Verlag, Berlin Zbl0562.35001MR737190
  11. Laurent Hauswirth, Harold Rosenberg, Joel Spruck, Infinite boundary value problems for constant mean curvature graphs in 2 × and 𝕊 2 × , Amer. J. Math. 131 (2009), 195-226 Zbl1178.53062MR2488489
  12. Howard Jenkins, James Serrin, The Dirichlet problem for the minimal surface equation in higher dimensions, J. Reine Angew. Math. 229 (1968), 170-187 Zbl0159.40204MR222467
  13. L. Mazet, M. M. Rodriguez, H. Rosenberg, The Dirichlet problem for the minimal surface equation – with possible infinite boundary data – over domains in a Riemannian manifold Zbl1235.53007
  14. Barbara Nelli, Harold Rosenberg, Minimal surfaces in 2 × , Bull. Braz. Math. Soc. (N.S.) 33 (2002), 263-292 Zbl1038.53011MR1940353
  15. Ye-Lin Ou, p -harmonic functions and the minimal graph equation in a Riemannian manifold, Illinois J. Math. 49 (2005), 911-927 (electronic) Zbl1089.58010MR2210268
  16. J. Spruck, Interior gradient estimates and existence theorems for constant mean curvature graphs in M n × , Pure Appl. Math. Q. 3 (2007), 785-800 Zbl1145.53048MR2351645

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.