Minimal Graphs in and
Ricardo Sà Earp[1]; Eric Toubiana[2]
- [1] Pontifícia Universidade Católica do Rio de Janeiro Departamento de Matemática Rio de Janeiro, 22453-900 RJ (Brazil)
- [2] Université Paris VII, Denis Diderot Institut de Mathématiques de Jussieu Case 7012, 2 place Jussieu 75251 Paris Cedex 05 (France)
Annales de l’institut Fourier (2010)
- Volume: 60, Issue: 7, page 2373-2402
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topReferences
top- Michael T. Anderson, Complete minimal varieties in hyperbolic space, Invent. Math. 69 (1982), 477-494 Zbl0515.53042MR679768
- Michael T. Anderson, Complete minimal hypersurfaces in hyperbolic -manifolds, Comment. Math. Helv. 58 (1983), 264-290 Zbl0549.53058MR705537
- Pierre Bérard, R. Sa Earp, Minimal hypersurfaces in , total curvature and index
- R. Courant, D. Hilbert, Methods of mathematical physics. Vol. II, (1989), John Wiley & Sons Inc., New York Zbl0729.00007MR1013360
- A. Coutant, Hypersurfaces de type Scherk
- R. Sa Earp, Parabolic and Hyperbolic Screw motion in , Journ. Austra. Math. Soc. 85 (2008), 113-143 Zbl1178.53060MR2460869
- R. Sa Earp, E. Toubiana, Existence and uniqueness of minimal graphs in hyperbolic space, Asian J. Math. 4 (2000), 669-694 Zbl0984.53005MR1796699
- R. Sa Earp, E. Toubiana, An asymptotic theorem for minimal surfaces and existence results for minimal graphs in , Math. Annalen 342 (2008), 309-331 Zbl1154.53039MR2425145
- R. Sa Earp, E. Toubiana, Introduction à la géométrie hyperbolique et aux surfaces de Riemann, Cassini (2009) Zbl1205.00010
- David Gilbarg, Neil S. Trudinger, Elliptic partial differential equations of second order, 224 (1983), Springer-Verlag, Berlin Zbl0562.35001MR737190
- Laurent Hauswirth, Harold Rosenberg, Joel Spruck, Infinite boundary value problems for constant mean curvature graphs in and , Amer. J. Math. 131 (2009), 195-226 Zbl1178.53062MR2488489
- Howard Jenkins, James Serrin, The Dirichlet problem for the minimal surface equation in higher dimensions, J. Reine Angew. Math. 229 (1968), 170-187 Zbl0159.40204MR222467
- L. Mazet, M. M. Rodriguez, H. Rosenberg, The Dirichlet problem for the minimal surface equation – with possible infinite boundary data – over domains in a Riemannian manifold Zbl1235.53007
- Barbara Nelli, Harold Rosenberg, Minimal surfaces in , Bull. Braz. Math. Soc. (N.S.) 33 (2002), 263-292 Zbl1038.53011MR1940353
- Ye-Lin Ou, -harmonic functions and the minimal graph equation in a Riemannian manifold, Illinois J. Math. 49 (2005), 911-927 (electronic) Zbl1089.58010MR2210268
- J. Spruck, Interior gradient estimates and existence theorems for constant mean curvature graphs in , Pure Appl. Math. Q. 3 (2007), 785-800 Zbl1145.53048MR2351645