Minimal Graphs in and
Ricardo Sà Earp[1]; Eric Toubiana[2]
- [1] Pontifícia Universidade Católica do Rio de Janeiro Departamento de Matemática Rio de Janeiro, 22453-900 RJ (Brazil)
- [2] Université Paris VII, Denis Diderot Institut de Mathématiques de Jussieu Case 7012, 2 place Jussieu 75251 Paris Cedex 05 (France)
Annales de l’institut Fourier (2010)
- Volume: 60, Issue: 7, page 2373-2402
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topSà Earp, Ricardo, and Toubiana, Eric. "Minimal Graphs in $\mathbb{H}^n\times \mathbb{R}$ and $\mathbb{R}^{n+1}$." Annales de l’institut Fourier 60.7 (2010): 2373-2402. <http://eudml.org/doc/116338>.
@article{SàEarp2010,
abstract = {We construct geometric barriers for minimal graphs in $\mathbb\{H\}^n\times \mathbb\{R\}.$We prove the existence and uniqueness of a solution of the vertical minimal equation in the interior of a convex polyhedron in $\mathbb\{H\}^n$ extending continuously to the interior of each face, taking infinite boundary data on one face and zero boundary value data on the other faces.In $\mathbb\{H\}^n\times \mathbb\{R\}$, we solve the Dirichlet problem for the vertical minimal equation in a $C^0$ convex domain $\Omega \subset \mathbb\{H\}^n$ taking arbitrarily continuous finite boundary and asymptotic boundary data.We prove the existence of another Scherk type hypersurface, given by the solution of the vertical minimal equation in the interior of certain admissible polyhedron taking alternatively infinite values $+\infty $ and $-\infty $ on adjacent faces of this polyhedron.We establish analogous results for minimal graphs when the ambient is the Euclidean space $\mathbb\{R\}^\{n+1\}$.},
affiliation = {Pontifícia Universidade Católica do Rio de Janeiro Departamento de Matemática Rio de Janeiro, 22453-900 RJ (Brazil); Université Paris VII, Denis Diderot Institut de Mathématiques de Jussieu Case 7012, 2 place Jussieu 75251 Paris Cedex 05 (France)},
author = {Sà Earp, Ricardo, Toubiana, Eric},
journal = {Annales de l’institut Fourier},
keywords = {Dirichlet problem; minimal equation; vertical graph; Perron process; barrier; convex domain; asymptotic boundary; translation hypersurface; Scherk hypersurface},
language = {eng},
number = {7},
pages = {2373-2402},
publisher = {Association des Annales de l’institut Fourier},
title = {Minimal Graphs in $\mathbb\{H\}^n\times \mathbb\{R\}$ and $\mathbb\{R\}^\{n+1\}$},
url = {http://eudml.org/doc/116338},
volume = {60},
year = {2010},
}
TY - JOUR
AU - Sà Earp, Ricardo
AU - Toubiana, Eric
TI - Minimal Graphs in $\mathbb{H}^n\times \mathbb{R}$ and $\mathbb{R}^{n+1}$
JO - Annales de l’institut Fourier
PY - 2010
PB - Association des Annales de l’institut Fourier
VL - 60
IS - 7
SP - 2373
EP - 2402
AB - We construct geometric barriers for minimal graphs in $\mathbb{H}^n\times \mathbb{R}.$We prove the existence and uniqueness of a solution of the vertical minimal equation in the interior of a convex polyhedron in $\mathbb{H}^n$ extending continuously to the interior of each face, taking infinite boundary data on one face and zero boundary value data on the other faces.In $\mathbb{H}^n\times \mathbb{R}$, we solve the Dirichlet problem for the vertical minimal equation in a $C^0$ convex domain $\Omega \subset \mathbb{H}^n$ taking arbitrarily continuous finite boundary and asymptotic boundary data.We prove the existence of another Scherk type hypersurface, given by the solution of the vertical minimal equation in the interior of certain admissible polyhedron taking alternatively infinite values $+\infty $ and $-\infty $ on adjacent faces of this polyhedron.We establish analogous results for minimal graphs when the ambient is the Euclidean space $\mathbb{R}^{n+1}$.
LA - eng
KW - Dirichlet problem; minimal equation; vertical graph; Perron process; barrier; convex domain; asymptotic boundary; translation hypersurface; Scherk hypersurface
UR - http://eudml.org/doc/116338
ER -
References
top- Michael T. Anderson, Complete minimal varieties in hyperbolic space, Invent. Math. 69 (1982), 477-494 Zbl0515.53042MR679768
- Michael T. Anderson, Complete minimal hypersurfaces in hyperbolic -manifolds, Comment. Math. Helv. 58 (1983), 264-290 Zbl0549.53058MR705537
- Pierre Bérard, R. Sa Earp, Minimal hypersurfaces in , total curvature and index
- R. Courant, D. Hilbert, Methods of mathematical physics. Vol. II, (1989), John Wiley & Sons Inc., New York Zbl0729.00007MR1013360
- A. Coutant, Hypersurfaces de type Scherk
- R. Sa Earp, Parabolic and Hyperbolic Screw motion in , Journ. Austra. Math. Soc. 85 (2008), 113-143 Zbl1178.53060MR2460869
- R. Sa Earp, E. Toubiana, Existence and uniqueness of minimal graphs in hyperbolic space, Asian J. Math. 4 (2000), 669-694 Zbl0984.53005MR1796699
- R. Sa Earp, E. Toubiana, An asymptotic theorem for minimal surfaces and existence results for minimal graphs in , Math. Annalen 342 (2008), 309-331 Zbl1154.53039MR2425145
- R. Sa Earp, E. Toubiana, Introduction à la géométrie hyperbolique et aux surfaces de Riemann, Cassini (2009) Zbl1205.00010
- David Gilbarg, Neil S. Trudinger, Elliptic partial differential equations of second order, 224 (1983), Springer-Verlag, Berlin Zbl0562.35001MR737190
- Laurent Hauswirth, Harold Rosenberg, Joel Spruck, Infinite boundary value problems for constant mean curvature graphs in and , Amer. J. Math. 131 (2009), 195-226 Zbl1178.53062MR2488489
- Howard Jenkins, James Serrin, The Dirichlet problem for the minimal surface equation in higher dimensions, J. Reine Angew. Math. 229 (1968), 170-187 Zbl0159.40204MR222467
- L. Mazet, M. M. Rodriguez, H. Rosenberg, The Dirichlet problem for the minimal surface equation – with possible infinite boundary data – over domains in a Riemannian manifold Zbl1235.53007
- Barbara Nelli, Harold Rosenberg, Minimal surfaces in , Bull. Braz. Math. Soc. (N.S.) 33 (2002), 263-292 Zbl1038.53011MR1940353
- Ye-Lin Ou, -harmonic functions and the minimal graph equation in a Riemannian manifold, Illinois J. Math. 49 (2005), 911-927 (electronic) Zbl1089.58010MR2210268
- J. Spruck, Interior gradient estimates and existence theorems for constant mean curvature graphs in , Pure Appl. Math. Q. 3 (2007), 785-800 Zbl1145.53048MR2351645
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.