The Dirichlet problem for the minimal surface equation in higher dimensions.

James Serrin; Howard Jenkins

Journal für die reine und angewandte Mathematik (1968)

  • Volume: 229, page 170-187
  • ISSN: 0075-4102; 1435-5345/e

How to cite

top

Serrin, James, and Jenkins, Howard. "The Dirichlet problem for the minimal surface equation in higher dimensions.." Journal für die reine und angewandte Mathematik 229 (1968): 170-187. <http://eudml.org/doc/150841>.

@article{Serrin1968,
author = {Serrin, James, Jenkins, Howard},
journal = {Journal für die reine und angewandte Mathematik},
keywords = {partial differential equations},
pages = {170-187},
title = {The Dirichlet problem for the minimal surface equation in higher dimensions.},
url = {http://eudml.org/doc/150841},
volume = {229},
year = {1968},
}

TY - JOUR
AU - Serrin, James
AU - Jenkins, Howard
TI - The Dirichlet problem for the minimal surface equation in higher dimensions.
JO - Journal für die reine und angewandte Mathematik
PY - 1968
VL - 229
SP - 170
EP - 187
KW - partial differential equations
UR - http://eudml.org/doc/150841
ER -

Citations in EuDML Documents

top
  1. Graham H. Williams, Global regularity for solutions of the minimal surface equation with continuous boundary values
  2. Ricardo Sà Earp, Eric Toubiana, Minimal Graphs in n × and n + 1
  3. Enrico Bombieri, Régularité des hypersurfaces minimales
  4. M. Miranda, Un principio di Massimo Forte per le frontiere minimali e una sua applicazione alla risoluzione del problema al contorno per l'equazione delle superfici di area minima
  5. Ernst Kuwert, On solutions of the exterior Dirichlet problem for the minimal surface equation
  6. Gary M. Lieberman, The first initial-boundary value problem for quasilinear second order parabolic equations
  7. Enrico Giusti, Boundary value problems for non-parametric surfaces of prescribed mean curvature
  8. Mariano Giaquinta, Giuseppe Modica, Jiří Souček, Functionals with linear growth in the calculus of variations. II.
  9. Mario Miranda, Maximum principles and minimal surfaces

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.