Quantum Equivalent Magnetic Fields that Are Not Classically Equivalent
Carolyn Gordon[1]; William Kirwin[2]; Dorothee Schueth[3]; David Webb[1]
- [1] Dartmouth College Department of Mathematics Hanover, NH 03755 (USA)
- [2] Instituto Superior Tecnico CAMGSD Departamento de Matematica Av. Rovisco Pais, 1049-001 Lisboa (Portugal) Current Address: University of Cologne Mathematisches Institut Weyertal 86 50931 Cologne (Germany)
- [3] Humboldt-Universität zu Berlin Institut für Mathematik 10099 Berlin (Germany)
Annales de l’institut Fourier (2010)
- Volume: 60, Issue: 7, page 2403-2419
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topGordon, Carolyn, et al. "Quantum Equivalent Magnetic Fields that Are Not Classically Equivalent." Annales de l’institut Fourier 60.7 (2010): 2403-2419. <http://eudml.org/doc/116339>.
@article{Gordon2010,
abstract = {We construct pairs of compact Kähler-Einstein manifolds $(M_i,g_i,\omega _i) (i=1,2)$ of complex dimension $n$ with the following properties: The canonical line bundle $L_i=\bigwedge ^n T^*M_i$ has Chern class $[\omega _i/2\pi ]$, and for each positive integer $k$ the tensor powers $L_1^\{\otimes k\}$ and $L_2^\{\otimes k\}$ are isospectral for the bundle Laplacian associated with the canonical connection, while $M_1$ and $M_2$ – and hence $T^*M_1$ and $T^*M_2$ – are not homeomorphic. In the context of geometric quantization, we interpret these examples as magnetic fields which are quantum equivalent but not classically equivalent. Moreover, we construct many examples of line bundles $L$, pairs of potentials $Q_1$, $Q_2$ on the base manifold, and pairs of connections $\nabla _1$, $\nabla _2$ on $L$ such that for each positive integer $k$ the associated Schrödinger operators on $L^\{\otimes k\}$ are isospectral.},
affiliation = {Dartmouth College Department of Mathematics Hanover, NH 03755 (USA); Instituto Superior Tecnico CAMGSD Departamento de Matematica Av. Rovisco Pais, 1049-001 Lisboa (Portugal) Current Address: University of Cologne Mathematisches Institut Weyertal 86 50931 Cologne (Germany); Humboldt-Universität zu Berlin Institut für Mathematik 10099 Berlin (Germany); Dartmouth College Department of Mathematics Hanover, NH 03755 (USA)},
author = {Gordon, Carolyn, Kirwin, William, Schueth, Dorothee, Webb, David},
journal = {Annales de l’institut Fourier},
keywords = {Geometric quantization; tensor powers of line bundles; Laplacian; isospectral line bundles; geometric quantization},
language = {eng},
number = {7},
pages = {2403-2419},
publisher = {Association des Annales de l’institut Fourier},
title = {Quantum Equivalent Magnetic Fields that Are Not Classically Equivalent},
url = {http://eudml.org/doc/116339},
volume = {60},
year = {2010},
}
TY - JOUR
AU - Gordon, Carolyn
AU - Kirwin, William
AU - Schueth, Dorothee
AU - Webb, David
TI - Quantum Equivalent Magnetic Fields that Are Not Classically Equivalent
JO - Annales de l’institut Fourier
PY - 2010
PB - Association des Annales de l’institut Fourier
VL - 60
IS - 7
SP - 2403
EP - 2419
AB - We construct pairs of compact Kähler-Einstein manifolds $(M_i,g_i,\omega _i) (i=1,2)$ of complex dimension $n$ with the following properties: The canonical line bundle $L_i=\bigwedge ^n T^*M_i$ has Chern class $[\omega _i/2\pi ]$, and for each positive integer $k$ the tensor powers $L_1^{\otimes k}$ and $L_2^{\otimes k}$ are isospectral for the bundle Laplacian associated with the canonical connection, while $M_1$ and $M_2$ – and hence $T^*M_1$ and $T^*M_2$ – are not homeomorphic. In the context of geometric quantization, we interpret these examples as magnetic fields which are quantum equivalent but not classically equivalent. Moreover, we construct many examples of line bundles $L$, pairs of potentials $Q_1$, $Q_2$ on the base manifold, and pairs of connections $\nabla _1$, $\nabla _2$ on $L$ such that for each positive integer $k$ the associated Schrödinger operators on $L^{\otimes k}$ are isospectral.
LA - eng
KW - Geometric quantization; tensor powers of line bundles; Laplacian; isospectral line bundles; geometric quantization
UR - http://eudml.org/doc/116339
ER -
References
top- Werner Ballmann, Lectures on Kähler manifolds, (2006), European Mathematical Society (EMS), Zürich Zbl1101.53042MR2243012
- Sean Bates, Alan Weinstein, Lectures on the geometry of quantization, 8 (1997), American Mathematical Society, Providence, RI Zbl1049.53061MR1806388
- Pierre Bérard, Transplantation et isospectralité. I, Math. Ann. 292 (1992), 547-559 Zbl0735.58008MR1152950
- F. A. Berezin, M. A. Shubin, The Schrödinger equation, 66 (1991), Kluwer Academic Publishers Group, Dordrecht Zbl0749.35001MR1186643
- Robert Brooks, On manifolds of negative curvature with isospectral potentials, Topology 26 (1987), 63-66 Zbl0617.53048MR880508
- Robert Brooks, Ruth Gornet, William H. Gustafson, Mutually isospectral Riemann surfaces, Adv. Math. 138 (1998), 306-322 Zbl0997.53031MR1645582
- Peter Buser, Isospectral Riemann surfaces, Ann. Inst. Fourier (Grenoble) 36 (1986), 167-192 Zbl0579.53036MR850750
- Carolyn Gordon, Eran Makover, David Webb, Transplantation and Jacobians of Sunada isospectral Riemann surfaces, Adv. Math. 197 (2005), 86-119 Zbl1083.58031MR2166178
- Victor Guillemin, Shlomo Sternberg, Geometric asymptotics, (1977), American Mathematical Society, Providence, R.I. Zbl0364.53011MR516965
- Victor Guillemin, Shlomo Sternberg, Symplectic techniques in physics, (1990), Cambridge University Press, Cambridge Zbl0734.58005MR1066693
- Ruishi Kuwabara, Isospectral connections on line bundles, Math. Z. 204 (1990), 465-473 Zbl0728.53025MR1062129
- Ruishi Kuwabara, Spectral geometry for Schrödinger operators in a magnetic field focusing on geometrical and dynamical structures on manifolds [translation of Sūgaku 54 (2002), no. 1, 37–57; MR1918697], Selected papers on analysis and differential equations 211 (2003), 25-46, Amer. Math. Soc., Providence, RI Zbl1122.58303MR1918697
- D. B. McReynolds, Isospectral locally symmetric manifolds Zbl1314.58021
- Hubert Pesce, Variétés hyperboliques et elliptiques fortement isospectrales, J. Funct. Anal. 134 (1995), 363-391 Zbl0847.58077MR1363805
- C. S. Rajan, On isospectral arithmetical spaces, Amer. J. Math. 129 (2007), 791-806 Zbl1131.58023MR2325104
- Michael Reed, Barry Simon, Methods of modern mathematical physics. I-IV, (1980), Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York Zbl0459.46001MR751959
- Jędrzej Śniatycki, Geometric quantization and quantum mechanics, 30 (1980), Springer-Verlag, New York Zbl0429.58007MR554085
- Toshikazu Sunada, Riemannian coverings and isospectral manifolds, Ann. of Math. (2) 121 (1985), 169-186 Zbl0585.58047MR782558
- Marie-France Vignéras, Variétés riemanniennes isospectrales et non isométriques, Ann. of Math. (2) 112 (1980), 21-32 Zbl0445.53026MR584073
- R. O. Wells, Differential analysis on complex manifolds, 65 (1980), Springer-Verlag, New York Zbl0435.32004MR608414
- N. M. J. Woodhouse, Geometric quantization, (1992), The Clarendon Press Oxford University Press, New York Zbl0747.58004MR1183739
- Steven Zelditch, Isospectrality in the FIO category, J. Differential Geom. 35 (1992), 689-710 Zbl0769.53026MR1163455
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.