Isospectral Riemann surfaces
Annales de l'institut Fourier (1986)
- Volume: 36, Issue: 2, page 167-192
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBuser, Peter. "Isospectral Riemann surfaces." Annales de l'institut Fourier 36.2 (1986): 167-192. <http://eudml.org/doc/74711>.
@article{Buser1986,
abstract = {We construct new examples of compact Riemann surfaces which are non isometric but have the same spectrum of the Laplacian. Examples are given for genus $g=5$ and for all $g\ge 7$. In a second part we give examples of isospectral non isometric surfaces in $\{\bf R\}^ 3$ which are realizable by paper models.},
author = {Buser, Peter},
journal = {Annales de l'institut Fourier},
keywords = {Riemann surfaces; spectrum of the Laplacian; isospectral},
language = {eng},
number = {2},
pages = {167-192},
publisher = {Association des Annales de l'Institut Fourier},
title = {Isospectral Riemann surfaces},
url = {http://eudml.org/doc/74711},
volume = {36},
year = {1986},
}
TY - JOUR
AU - Buser, Peter
TI - Isospectral Riemann surfaces
JO - Annales de l'institut Fourier
PY - 1986
PB - Association des Annales de l'Institut Fourier
VL - 36
IS - 2
SP - 167
EP - 192
AB - We construct new examples of compact Riemann surfaces which are non isometric but have the same spectrum of the Laplacian. Examples are given for genus $g=5$ and for all $g\ge 7$. In a second part we give examples of isospectral non isometric surfaces in ${\bf R}^ 3$ which are realizable by paper models.
LA - eng
KW - Riemann surfaces; spectrum of the Laplacian; isospectral
UR - http://eudml.org/doc/74711
ER -
References
top- [1] P. BUSER, Riemannsche Flächen mit Eigenwerten in (0, 1/4), Comment. Math. Helvetici, 52 (1977), 25-34. Zbl0348.53027MR55 #7924
- [2] J. CHAVEL, Eigenvalues in Riemannian Geometry, Academic Press. Orlando etc., 1984. Zbl0551.53001
- [3] F. GASSMAN, Bemerkungen zur vorstehenden Arbeit von Hurwitz, Math. Z., 25 (1926), 665-675.
- [4] I. M. GEL'FAND, Automorphic functions and the theory of representations, Proc. Internat. Congress Math., (Stockholm, 1962), 74-85. Zbl0138.07102
- [5] I. GERST, On the theory of n-th power residues and a conjecture of Kronecker, Acta Arithmetica, 17 (1970), 121-139. Zbl0233.10002MR44 #1643
- [6] H. HUBER, Zur analytischen Theorie hyperbolischer Raumformen und Bewegungsgruppen, Math., Ann., 138 (1959), 1-26. Zbl0089.06101MR22 #99
- [7] H. P. MCKEAN, Selberg's trace formula as applied to a compact Riemann surface, Comm. Pure Appl. Math., 25 (1972), 225-246.
- [8] J. MILNOR, Eigenvalues of the Laplace operators on certain manifolds, Proc. Nat. Sci. USA, 51 (1964), 542. Zbl0124.31202MR28 #5403
- [9] R. PERLIS, On the equation ξk(s) = ξk'(s), Journal of Number Theory, 9 (1977), 342-360. Zbl0389.12006
- [10] E. REES, Notes on geometry, Springer, Berlin, 1983. Zbl0498.51001MR84c:51001b
- [11] A. SELBERG, Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc., 20 (1956), 47-87. Zbl0072.08201MR19,531g
- [12] T. SUNADA, Riemannian coverings and isospectral manifolds, Annals of Math., 121 (1985), 169-186. Zbl0585.58047MR86h:58141
- [13] T. SUNADA, Gel'fand's problem on unitary representations associated with discrete subgroups of PSL2 (R), Bull. Amer. Meth. Soc., 12 (1985), 237-238. Zbl0581.22013MR86c:22018
- [14] S. TANAKA, Selberg's Trace Formula and Spectrum, Osaka J. Math., (1966), 205-206. Zbl0202.11601MR36 #312
- [15] W. THURSTON, The geometry and topology of 3-manifolds, Princeton Lecture Notes. Zbl0483.57007
- [16] H. URAKAWA, Bounded domains which are isospectral but not congruent, Ann. Sci. Ec. Norm. Sup., 4e série, t. 15 (1982), 441-456. Zbl0505.58036MR84g:58106
- [17] M. F. VIGNÉRAS, Exemples de sous-groupes discrets non conjugués de PSL (2, R) qui ont même fonction zêta de Selberg, C.R.A.S., Paris, 287 (1978). Zbl0387.10013MR58 #10826
- [18] M.F. VIGNÉRAS, Variétés riemanniennes isospectrales et non isométriques, Ann. of Math., 112 (1980), 21-32. Zbl0445.53026MR82b:58102
- [19] S. WOLPERT, The eigenvalue spectrum as moduli for compact Riemann surfaces, Bull. Amer. Math. Soc., 83 (1977), 1306-1308. Zbl0368.32009MR58 #17228
- [20] S. WOLPERT, The length spectra as moduli for compact Riemann surfaces, Ann. of Math., 109 (1979), 323-351. Zbl0441.30055MR80j:58067
Citations in EuDML Documents
top- Ori Parzanchevski, On -sets and isospectrality
- Pierre Bérard, Transplantation et isospectralité I
- Carolyn Gordon, William Kirwin, Dorothee Schueth, David Webb, Quantum Equivalent Magnetic Fields that Are Not Classically Equivalent
- Carolyn S. Gordon, Ruth Gornet, Dorothee Schueth, David L. Webb, Edward N. Wilson, Isospectral deformations of closed riemannian manifolds with different scalar curvature
- Pierre Bérard, Variétés riemanniennes isospectrales non isométriques
- Laurent Charles, Álvaro Pelayo, San Vũ Ngoc, Isospectrality for quantum toric integrable systems
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.