On the spectral theory and dynamics of asymptotically hyperbolic manifolds
- [1] Hausdorff Center for Mathematics Villa Maria Endenicher Allee 62 53115 Bonn (Deutschland)
Annales de l’institut Fourier (2010)
- Volume: 60, Issue: 7, page 2461-2492
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topRowlett, Julie. "On the spectral theory and dynamics of asymptotically hyperbolic manifolds." Annales de l’institut Fourier 60.7 (2010): 2461-2492. <http://eudml.org/doc/116342>.
@article{Rowlett2010,
abstract = {We present a brief survey of the spectral theory and dynamics of infinite volume asymptotically hyperbolic manifolds. Beginning with their geometry and examples, we proceed to their spectral and scattering theories, dynamics, and the physical description of their quantum and classical mechanics. We conclude with a discussion of recent results, ideas, and conjectures.},
affiliation = {Hausdorff Center for Mathematics Villa Maria Endenicher Allee 62 53115 Bonn (Deutschland)},
author = {Rowlett, Julie},
journal = {Annales de l’institut Fourier},
keywords = {Asymptotically hyperbolic; conformally compact; wave trace; negative curvature; resonances; length spectrum; topological entropy; dynamics; geodesic flow; prime orbit theorem; quantum and classical mechanics; asymptotically hyperbolic},
language = {eng},
number = {7},
pages = {2461-2492},
publisher = {Association des Annales de l’institut Fourier},
title = {On the spectral theory and dynamics of asymptotically hyperbolic manifolds},
url = {http://eudml.org/doc/116342},
volume = {60},
year = {2010},
}
TY - JOUR
AU - Rowlett, Julie
TI - On the spectral theory and dynamics of asymptotically hyperbolic manifolds
JO - Annales de l’institut Fourier
PY - 2010
PB - Association des Annales de l’institut Fourier
VL - 60
IS - 7
SP - 2461
EP - 2492
AB - We present a brief survey of the spectral theory and dynamics of infinite volume asymptotically hyperbolic manifolds. Beginning with their geometry and examples, we proceed to their spectral and scattering theories, dynamics, and the physical description of their quantum and classical mechanics. We conclude with a discussion of recent results, ideas, and conjectures.
LA - eng
KW - Asymptotically hyperbolic; conformally compact; wave trace; negative curvature; resonances; length spectrum; topological entropy; dynamics; geodesic flow; prime orbit theorem; quantum and classical mechanics; asymptotically hyperbolic
UR - http://eudml.org/doc/116342
ER -
References
top- Michael T. Anderson, Geometric aspects of the AdS/CFT correspondence, AdS/CFT correspondence: Einstein metrics and their conformal boundaries 8 (2005), 1-31, Eur. Math. Soc., Zürich Zbl1071.81553MR2160865
- Michael T. Anderson, Topics in conformally compact Einstein metrics, Perspectives in Riemannian geometry 40 (2006), 1-26, Amer. Math. Soc., Providence, RI Zbl1110.53031MR2237104
- D. V. Anosov, Geodesic flows on closed Riemannian manifolds of negative curvature, Trudy Mat. Inst. Steklov. 90 (1967) Zbl0163.43604MR224110
- James Arthur, The trace formula and Hecke operators, Number theory, trace formulas and discrete groups (Oslo, 1987) (1989), 11-27, Academic Press, Boston, MA Zbl0671.10026MR993309
- Eric Bahuaud, An intrinsic characterization of asymptotically hyperbolic metrics, (2007) Zbl1163.53025MR2710594
- Eric Bahuaud, Intrinsic characterization for Lipschitz asymptotically hyperbolic metrics, Pacific J. Math. 239 (2009), 231-249 Zbl1163.53025MR2457230
- Luis Barreira, Yakov B. Pesin, Lyapunov exponents and smooth ergodic theory, 23 (2002), American Mathematical Society, Providence, RI Zbl1195.37002MR1862379
- Pierre H. Bérard, On the wave equation on a compact Riemannian manifold without conjugate points, Math. Z. 155 (1977), 249-276 Zbl0341.35052MR455055
- R. L. Bishop, B. O’Neill, Manifolds of negative curvature, Trans. Amer. Math. Soc. 145 (1969), 1-49 Zbl0191.52002MR251664
- J. Bolton, Conditions under which a geodesic flow is Anosov, Math. Ann. 240 (1979), 103-113 Zbl0382.58017MR524660
- M. Born, W. Heisenberg, P. Jordan, Zur Quantenmechanik II, Zeitschrift für Physik 35 (1925), 557-616
- David Borthwick, Scattering theory for conformally compact metrics with variable curvature at infinity, J. Funct. Anal. 184 (2001), 313-376 Zbl1006.58019MR1851001
- David Borthwick, Upper and lower bounds on resonances for manifolds hyperbolic near infinity, Comm. Partial Differential Equations 33 (2008), 1507-1539 Zbl1168.58012MR2450168
- David Borthwick, Chris Judge, Peter A. Perry, Selberg’s zeta function and the spectral geometry of geometrically finite hyperbolic surfaces, Comment. Math. Helv. 80 (2005), 483-515 Zbl1079.58023MR2165200
- David Borthwick, Peter Perry, Scattering poles for asymptotically hyperbolic manifolds, Trans. Amer. Math. Soc. 354 (2002), 1215-1231 (electronic) Zbl1009.58021MR1867379
- David Borthwick, Peter Perry, Inverse scattering results for manifolds hyperbolic near infinity, (2009) Zbl1229.58024
- Rufus Bowen, Periodic orbits for hyperbolic flows, Amer. J. Math. 94 (1972), 1-30 Zbl0254.58005MR298700
- Rufus Bowen, Maximizing entropy for a hyperbolic flow, Math. Systems Theory 7 (1974), 300-303 Zbl0303.58014MR385928
- Richard D. Canary, Yair N. Minsky, Edward C. Taylor, Spectral theory, Hausdorff dimension and the topology of hyperbolic 3-manifolds, J. Geom. Anal. 9 (1999), 17-40 Zbl0957.57012MR1760718
- Manfredo Perdigão do Carmo, Riemannian geometry, (1992), Birkhäuser Boston Inc., Boston, MA Zbl0752.53001MR1138207
- Sun-Yung A. Chang, Matthew J. Gursky, Paul Yang, Conformal invariants associated to a measure, Proc. Natl. Acad. Sci. USA 103 (2006), 2535-2540 Zbl1160.53356MR2203156
- Sun-Yung A. Chang, Jie Qing, Paul Yang, Some progress in conformal geometry, SIGMA Symmetry Integrability Geom. Methods Appl. 3 (2007) Zbl1133.53031MR2366900
- Su Shing Chen, Anthony Manning, The convergence of zeta functions for certain geodesic flows depends on their pressure, Math. Z. 176 (1981), 379-382 Zbl0437.58016MR610218
- P. Dirac, The quantum theory of the electron, Proc. R. Soc. London Series A, (1928), 610-624 Zbl54.0973.01
- J. J. Duistermaat, V. W. Guillemin, The spectrum of positive elliptic operators and periodic bicharacteristics, Invent. Math. 29 (1975), 39-79 Zbl0307.35071MR405514
- Patrick Eberlein, Geodesic flows on negatively curved manifolds. I, Ann. of Math. (2) 95 (1972), 492-510 Zbl0217.47304MR310926
- Patrick Eberlein, Geodesic flows on negatively curved manifolds. II, Trans. Amer. Math. Soc. 178 (1973), 57-82 Zbl0264.53027MR314084
- Patrick Eberlein, When is a geodesic flow of Anosov type? I,II, J. Differential Geometry 8 (1973), 437-463; ibid. 8 (1973), 565–577 Zbl0295.58009MR380891
- Patrick Eberlein, Ursula Hamenstädt, Viktor Schroeder, Manifolds of nonpositive curvature, Differential geometry: Riemannian geometry (Los Angeles, CA, 1990) 54 (1993), 179-227, Amer. Math. Soc., Providence, RI Zbl0811.53038MR1216622
- Patrick Eberlein, B. O’Neill, Visibility manifolds, Pacific J. Math. 46 (1973), 45-109 Zbl0264.53026MR336648
- P. Einstein, B. Podolsky, N. Rosen, Can quantum-mechanical description of physical reality be considered complete?, Phys. Rev. 47 (1935), 777-780 Zbl0012.04201
- Charles Fefferman, C. Robin Graham, Conformal invariants, Astérisque (1985), 95-116 Zbl0602.53007MR837196
- Charles Fefferman, C. Robin Graham, -curvature and Poincaré metrics, Math. Res. Lett. 9 (2002), 139-151 Zbl1016.53031MR1909634
- Ernesto Franco, Flows with unique equilibrium states, Amer. J. Math. 99 (1977), 486-514 Zbl0368.54014MR442193
- A. Freire, R. Mañé, On the entropy of the geodesic flow in manifolds without conjugate points, Invent. Math. 69 (1982), 375-392 Zbl0476.58019MR679763
- Ramesh Gangolli, Garth Warner, On Selberg’s trace formula, J. Math. Soc. Japan 27 (1975), 328-343 Zbl0325.22014MR399354
- Ramesh Gangolli, Garth Warner, Zeta functions of Selberg’s type for some noncompact quotients of symmetric spaces of rank one, Nagoya Math. J. 78 (1980), 1-44 MR571435
- C. Robin Graham, Volume and area renormalizations for conformally compact Einstein metrics, The Proceedings of the 19th Winter School “Geometry and Physics” (Srní, 1999) (2000), 31-42 Zbl0984.53020MR1758076
- C. Robin Graham, Ralph Jenne, Lionel J. Mason, George A. J. Sparling, Conformally invariant powers of the Laplacian. I. Existence, J. London Math. Soc. (2) 46 (1992), 557-565 Zbl0726.53010MR1190438
- C. Robin Graham, Maciej Zworski, Scattering matrix in conformal geometry, Invent. Math. 152 (2003), 89-118 Zbl1030.58022MR1965361
- Colin Guillarmou, Meromorphic properties of the resolvent on asymptotically hyperbolic manifolds, Duke Math. J. 129 (2005), 1-37 Zbl1099.58011MR2153454
- Colin Guillarmou, Generalized Krein formula, determinants, and Selberg zeta function in even dimension, Amer. J. Math. 131 (2009), 1359-1417 Zbl1207.58023MR2555844
- Colin Guillarmou, Frédéric Naud, Wave 0-trace and length spectrum on convex co-compact hyperbolic manifolds, Comm. Anal. Geom. 14 (2006), 945-967 Zbl1127.58028MR2287151
- Victor Guillemin, Wave-trace invariants and a theorem of Zelditch, Internat. Math. Res. Notices (1993), 303-308 Zbl0798.58073MR1253645
- Victor Guillemin, Wave-trace invariants, Duke Math. J. 83 (1996), 287-352 Zbl0858.58051MR1390650
- Laurent Guillopé, Sur la distribution des longueurs des géodésiques fermées d’une surface compacte à bord totalement géodésique, Duke Math. J. 53 (1986), 827-848 Zbl0611.53042MR860674
- Laurent Guillopé, Maciej Zworski, Polynomial bounds on the number of resonances for some complete spaces of constant negative curvature near infinity, Asymptotic Anal. 11 (1995), 1-22 Zbl0859.58028MR1344252
- Laurent Guillopé, Maciej Zworski, Upper bounds on the number of resonances for non-compact Riemann surfaces, J. Funct. Anal. 129 (1995), 364-389 Zbl0841.58063MR1327183
- Laurent Guillopé, Maciej Zworski, The wave trace for Riemann surfaces, Geom. Funct. Anal. 9 (1999), 1156-1168 Zbl0947.58022MR1736931
- M. C. Gutzwiller, Periodic orbits and classical quantization conditions, J. Math. Phys. 12 (1971), 343-358
- Dennis A. Hejhal, The Selberg trace formula for congruence subgroups, Bull. Amer. Math. Soc. 81 (1975), 752-755 Zbl0304.10018MR371818
- Dennis A. Hejhal, The Selberg trace formula for . Vol. 1 and 2, 548 and 1001 (1976 and 1983), Springer-Verlag, Berlin Zbl0543.10020
- Lars Hörmander, The analysis of linear partial differential operators. I, (2003), Springer-Verlag, Berlin Zbl1028.35001MR1996773
- Dmitry Jakobson, Iosif Polterovich, John A. Toth, A lower bound for the remainder in Weyl’s law on negatively curved surfaces, Int. Math. Res. Not. IMRN (2008) Zbl1161.58010MR2418855
- Mark S. Joshi, Antônio Sá Barreto, Inverse scattering on asymptotically hyperbolic manifolds, Acta Math. 184 (2000), 41-86 Zbl1142.58309MR1756569
- Mark S. Joshi, Antônio Sá Barreto, The wave group on asymptotically hyperbolic manifolds, J. Funct. Anal. 184 (2001), 291-312 Zbl0997.58010MR1851000
- A. Karnaukh, Spectral count on compact negatively curved surfaces, (1996) MR2695000
- Anatole Katok, Boris Hasselblatt, Introduction to the modern theory of dynamical systems, 54 (1995), Cambridge University Press, Cambridge Zbl0878.58019MR1326374
- Wilhelm Klingenberg, Riemannian manifolds with geodesic flow of Anosov type, Ann. of Math. (2) 99 (1974), 1-13 Zbl0272.53025MR377980
- S. P. Lalley, The “prime number theorem” for the periodic orbits of a Bernoulli flow, Amer. Math. Monthly 95 (1988), 385-398 Zbl0645.28013MR937528
- Peter D. Lax, Ralph S. Phillips, Translation representation for automorphic solutions of the wave equation in non-Euclidean spaces. I, Comm. Pure Appl. Math. 37 (1984), 303-328 Zbl0544.10024MR739923
- John M. Lee, The spectrum of an asymptotically hyperbolic Einstein manifold, Comm. Anal. Geom. 3 (1995), 253-271 Zbl0934.58029MR1362652
- John M. Lee, Fredholm operators and Einstein metrics on conformally compact manifolds, Mem. Amer. Math. Soc. 183 (2006) Zbl1112.53002MR2252687
- Anthony Manning, Topological entropy for geodesic flows, Ann. of Math. (2) 110 (1979), 567-573 Zbl0426.58016MR554385
- Anthony Manning, private correspondence, (2008)
- Rafe Mazzeo, The Hodge cohomology of a conformally compact metric, J. Differential Geom. 28 (1988), 309-339 Zbl0656.53042MR961517
- Rafe Mazzeo, Frank Pacard, Maskit combinations of Poincaré-Einstein metrics, Adv. Math. 204 (2006), 379-412 Zbl1097.53029MR2249618
- Rafe R. Mazzeo, Richard B. Melrose, Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature, J. Funct. Anal. 75 (1987), 260-310 Zbl0636.58034MR916753
- Richard B. Melrose, The Atiyah-Patodi-Singer index theorem, 4 (1993), A K Peters Ltd., Wellesley, MA Zbl0796.58050MR1348401
- Werner Müller, Spectral geometry and scattering theory for certain complete surfaces of finite volume, Invent. Math. 109 (1992), 265-305 Zbl0772.58063MR1172692
- Frédéric Naud, Classical and quantum lifetimes on some non-compact Riemann surfaces, J. Phys. A 38 (2005), 10721-10729 Zbl1082.81026MR2197679
- William Parry, Mark Pollicott, An analogue of the prime number theorem for closed orbits of Axiom A flows, Ann. of Math. (2) 118 (1983), 573-591 Zbl0537.58038MR727704
- S. J. Patterson, Lectures on measures on limit sets of Kleinian groups, Analytical and geometric aspects of hyperbolic space (Coventry/Durham, 1984) 111 (1987), 281-323, Cambridge Univ. Press, Cambridge Zbl0611.30036MR903855
- S. J. Patterson, Peter A. Perry, Divisor of the Selberg zeta function for Kleinian groups in even dimensions, Duke Math. J. 326 (2001), 321-390 Zbl1012.11083MR1813434
- Peter A. Perry, The Laplace operator on a hyperbolic manifold. I. Spectral and scattering theory, J. Funct. Anal. 75 (1987), 161-187 Zbl0631.58030MR911204
- Peter A. Perry, Asymptotics of the length spectrum for hyperbolic manifolds of infinite volume, Geom. Funct. Anal. 11 (2001), 132-141 Zbl0986.11059MR1829645
- Peter A. Perry, A Poisson summation formula and lower bounds for resonances in hyperbolic manifolds, Int. Math. Res. Not. (2003), 1837-1851 Zbl1035.58020MR1988782
- R. S. Phillips, P. Sarnak, The Laplacian for domains in hyperbolic space and limit sets of Kleinian groups, Acta Math. 155 (1985), 173-241 Zbl0611.30037MR806414
- Ralph Phillips, The spectrum of the Laplacian for domains in hyperbolic space and limit sets of Kleinian groups, Anniversary volume on approximation theory and functional analysis (Oberwolfach, 1983) 65 (1984), 521-525, Birkhäuser, Basel Zbl0559.10017MR820548
- Ralph Phillips, Zeév Rudnick, The circle problem in the hyperbolic plane, J. Funct. Anal. 121 (1994), 78-116 Zbl0812.11035MR1270589
- Steven Rosenberg, The Laplacian on a Riemannian manifold, 31 (1997), Cambridge University Press, Cambridge Zbl0868.58074MR1462892
- Julie Rowlett, Dynamics of asymptotically hyperbolic manifolds, Pacific J. Math. 242 (2009), 377-397 Zbl1198.37036MR2546718
- Michael Rubinstein, Peter Sarnak, Chebyshev’s bias, Experiment. Math. 3 (1994), 173-197 Zbl0823.11050MR1329368
- Antônio Sá Barreto, Radiation fields, scattering, and inverse scattering on asymptotically hyperbolic manifolds., Duke Math. J. 129 (2005), 407-480 Zbl1154.58310MR2169870
- E. Schrödinger, An undulatory theory of the mechanics of atoms and molecules, Phys. Rev. 28 (1926), 1049-1070 Zbl52.0965.07
- A. Selberg, Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc. (N.S.) 20 (1956), 47-87 Zbl0072.08201MR88511
- Yuguang Shi, Gang Tian, Rigidity of asymptotically hyperbolic manifolds, Comm. Math. Phys. 259 (2005), 545-559 Zbl1092.53033MR2174416
- S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747-817 Zbl0202.55202MR228014
- Dennis Sullivan, The density at infinity of a discrete group of hyperbolic motions, Inst. Hautes Études Sci. Publ. Math. (1979), 171-202 Zbl0439.30034MR556586
- Peter Walters, A variational principle for the pressure of continuous transformations, Amer. J. Math. 97 (1975), 937-971 Zbl0318.28007MR390180
- Chengbo Yue, The ergodic theory of discrete isometry groups on manifolds of variable negative curvature, Trans. Amer. Math. Soc. 348 (1996), 4965-5005 Zbl0864.58047MR1348871
- Steven Zelditch, On the rate of quantum ergodicity. I. Upper bounds, Comm. Math. Phys. 160 (1994), 81-92 Zbl0788.58043MR1262192
- Steven Zelditch, Wave invariants at elliptic closed geodesics, Geom. Funct. Anal. 7 (1997), 145-213 Zbl0876.58010MR1437476
- Steven Zelditch, Wave invariants for non-degenerate closed geodesics, Geom. Funct. Anal. 8 (1998), 179-217 Zbl0908.58022MR1601862
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.