Monopole metrics and the orbifold Yamabe problem
- [1] University of Wisconsin Department of Mathematics 480 Lincoln Drive Madison, WI 53706 (USA)
Annales de l’institut Fourier (2010)
- Volume: 60, Issue: 7, page 2503-2543
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topReferences
top- Kazuo Akutagawa, Yamabe metrics of positive scalar curvature and conformally flat manifolds, Differential Geom. Appl. 4 (1994), 239-258 Zbl0810.53030MR1299397
- Kazuo Akutagawa, Convergence for Yamabe metrics of positive scalar curvature with integral bounds on curvature, Pacific J. Math. 175 (1996), 307-335 Zbl0881.53036MR1432834
- Kazuo Akutagawa, Computations of the orbifold Yamabe invariant, (2010) Zbl1248.53034
- Kazuo Akutagawa, Boris Botvinnik, Yamabe metrics on cylindrical manifolds, Geom. Funct. Anal. 13 (2003), 259-333 Zbl1161.53344MR1982146
- Kazuo Akutagawa, Boris Botvinnik, The Yamabe invariants of orbifolds and cylindrical manifolds, and -harmonic spinors, J. Reine Angew. Math. 574 (2004), 121-146 Zbl1055.53035MR2099112
- Michael T. Anderson, Ricci curvature bounds and Einstein metrics on compact manifolds, J. Amer. Math. Soc. 2 (1989), 455-490 Zbl0694.53045MR999661
- Michael T. Anderson, Orbifold compactness for spaces of Riemannian metrics and applications, Math. Ann. 331 (2005), 739-778 Zbl1071.53025MR2148795
- Michael T. Anderson, Peter B. Kronheimer, Claude LeBrun, Complete Ricci-flat Kähler manifolds of infinite topological type, Comm. Math. Phys. 125 (1989), 637-642 Zbl0734.53051MR1024931
- Thierry Aubin, Nonlinear analysis on manifolds. Monge-Ampère equations, 252 (1982), Springer-Verlag, New York Zbl0512.53044MR681859
- Shigetoshi Bando, Bubbling out of Einstein manifolds, Tohoku Math. J. (2) 42 (1990), 205-216 Zbl0719.53025MR1053949
- Robert Bartnik, The mass of an asymptotically flat manifold, Comm. Pure Appl. Math. 39 (1986), 661-693 Zbl0598.53045MR849427
- Luis A. Caffarelli, Basilis Gidas, Joel Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math. 42 (1989), 271-297 Zbl0702.35085MR982351
- Sun-Yung A. Chang, Matthew J. Gursky, Paul C. Yang, An equation of Monge-Ampère type in conformal geometry, and four-manifolds of positive Ricci curvature, Ann. of Math. (2) 155 (2002), 709-787 Zbl1031.53062MR1923964
- Sun-Yung A. Chang, Jie Qing, Paul Yang, On a conformal gap and finiteness theorem for a class of four-manifolds, Geom. Funct. Anal. 17 (2007), 404-434 Zbl1124.53020MR2322490
- Xiuxiong Chen, Claude Lebrun, Brian Weber, On conformally Kähler, Einstein manifolds, J. Amer. Math. Soc. 21 (2008), 1137-1168 Zbl1208.53072MR2425183
- Xiuxiong Chen, Brian Weber, Moduli spaces of critical riemannian metrics with norm curvature bounds, (2007) Zbl1205.53074
- S. Donaldson, R. Friedman, Connected sums of self-dual manifolds and deformations of singular spaces, Nonlinearity 2 (1989), 197-239 Zbl0671.53029MR994091
- Andreas Floer, Self-dual conformal structures on , J. Differential Geom. 33 (1991), 551-573 Zbl0736.53046MR1094469
- G.W. Gibbons, S.W. Hawking, Gravitational multi-instantons, Physics Letters B 78 (1978), 430-432
- Matthew J. Gursky, Jeff A. Viaclovsky, A fully nonlinear equation on four-manifolds with positive scalar curvature, J. Differential Geom. 63 (2003), 131-154 Zbl1070.53018MR2015262
- Emmanuel Hebey, From the Yamabe problem to the equivariant Yamabe problem, Actes de la Table Ronde de Géométrie Différentielle (Luminy, 1992) 1 (1996), 377-402, Soc. Math. France, Paris Zbl0880.53035MR1427765
- N. J. Hitchin, Polygons and gravitons, Math. Proc. Cambridge Philos. Soc. 85 (1979), 465-476 Zbl0405.53016MR520463
- N. J. Hitchin, Einstein metrics and the eta-invariant, Boll. Un. Mat. Ital. B (7) 11 (1997), 95-105 Zbl0973.53519MR1456253
- Nobuhiro Honda, Degenerations of LeBrun twistor spaces, (2010) Zbl1205.32019
- Nobuhiro Honda, Jeff Viaclovsky, Conformal symmetries of self-dual hyperbolic monopole metrics, (2009) Zbl1276.53029
- Dominic Joyce, Explicit construction of self-dual -manifolds, Duke Math. J. 77 (1995), 519-552 Zbl0855.57028MR1324633
- Dominic Joyce, Constant scalar curvature metrics on connected sums, Int. J. Math. Math. Sci. (2003), 405-450 Zbl1026.53019MR1961016
- Osamu Kobayashi, Scalar curvature of a metric with unit volume, Math. Ann. 279 (1987), 253-265 Zbl0611.53037MR919505
- P. B. Kronheimer, The construction of ALE spaces as hyper-Kähler quotients, J. Differential Geom. 29 (1989), 665-683 Zbl0671.53045MR992334
- Wolfgang Kühnel, Conformal transformations between Einstein spaces, Conformal geometry (Bonn, 1985/1986) (1988), 105-146, Vieweg, Braunschweig Zbl0667.53039MR979791
- Claude LeBrun, Counter-examples to the generalized positive action conjecture, Comm. Math. Phys. 118 (1988), 591-596 Zbl0659.53050MR962489
- Claude LeBrun, Explicit self-dual metrics on , J. Differential Geom. 34 (1991), 223-253 Zbl0725.53067MR1114461
- Claude LeBrun, Shin Nayatani, Takashi Nitta, Self-dual manifolds with positive Ricci curvature, Math. Z. 224 (1997), 49-63 Zbl0868.53032MR1427703
- John M. Lee, Thomas H. Parker, The Yamabe problem, Bull. Amer. Math. Soc. (N.S.) 17 (1987), 37-91 Zbl0633.53062MR888880
- Rafe Mazzeo, Daniel Pollack, Karen Uhlenbeck, Connected sum constructions for constant scalar curvature metrics, Topol. Methods Nonlinear Anal. 6 (1995), 207-233 Zbl0866.58069MR1399537
- Hiraku Nakajima, Self-duality of ALE Ricci-flat -manifolds and positive mass theorem, Recent topics in differential and analytic geometry 18 (1990), 385-396, Academic Press, Boston, MA Zbl0744.53025MR1145266
- Hiraku Nakajima, A convergence theorem for Einstein metrics and the ALE spaces [ MR1193019 (93k:53044)], Selected papers on number theory, algebraic geometry, and differential geometry 160 (1994), 79-94, Amer. Math. Soc., Providence, RI Zbl0808.53046MR1308542
- Morio Obata, The conjectures on conformal transformations of Riemannian manifolds, J. Differential Geometry 6 (1971/72), 247-258 Zbl0236.53042MR303464
- Y. Sun Poon, Compact self-dual manifolds with positive scalar curvature, J. Differential Geom. 24 (1986), 97-132 Zbl0583.53054MR857378
- John G. Ratcliffe, Foundations of hyperbolic manifolds, 149 (2006), Springer, New York Zbl1106.51009MR2249478
- Richard Schoen, Conformal deformation of a Riemannian metric to constant scalar curvature, J. Differential Geom. 20 (1984), 479-495 Zbl0576.53028MR788292
- Richard Schoen, On the number of constant scalar curvature metrics in a conformal class, Differential geometry 52 (1991), 311-320, Longman Sci. Tech., Harlow Zbl0733.53021MR1173050
- Yoshihiro Tashiro, Complete Riemannian manifolds and some vector fields, Trans. Amer. Math. Soc. 117 (1965), 251-275 Zbl0136.17701MR174022
- Gang Tian, On Calabi’s conjecture for complex surfaces with positive first Chern class, Invent. Math. 101 (1990), 101-172 Zbl0716.32019MR1055713
- Gang Tian, Jeff Viaclovsky, Bach-flat asymptotically locally Euclidean metrics, Invent. Math. 160 (2005), 357-415 Zbl1085.53030MR2138071
- Gang Tian, Jeff Viaclovsky, Moduli spaces of critical Riemannian metrics in dimension four, Adv. Math. 196 (2005), 346-372 Zbl1252.53045MR2166311
- Gang Tian, Jeff Viaclovsky, Volume growth, curvature decay, and critical metrics, Comment. Math. Helv. 83 (2008), 889-911 Zbl1154.53024MR2442967