Monopole metrics and the orbifold Yamabe problem

Jeff A. Viaclovsky[1]

  • [1] University of Wisconsin Department of Mathematics 480 Lincoln Drive Madison, WI 53706 (USA)

Annales de l’institut Fourier (2010)

  • Volume: 60, Issue: 7, page 2503-2543
  • ISSN: 0373-0956

Abstract

top
We consider the self-dual conformal classes on discovered by LeBrun. These depend upon a choice of points in hyperbolic -space, called monopole points. We investigate the limiting behavior of various constant scalar curvature metrics in these conformal classes as the points approach each other, or as the points tend to the boundary of hyperbolic space. There is a close connection to the orbifold Yamabe problem, which we show is not always solvable (in contrast to the case of compact manifolds). In particular, we show that there is no constant scalar curvature orbifold metric in the conformal class of a conformally compactified non-flat hyperkähler ALE space in dimension four.

How to cite

top

Viaclovsky, Jeff A.. "Monopole metrics and the orbifold Yamabe problem." Annales de l’institut Fourier 60.7 (2010): 2503-2543. <http://eudml.org/doc/116344>.

@article{Viaclovsky2010,
abstract = {We consider the self-dual conformal classes on $n \# \mathbb\{CP\}^2$ discovered by LeBrun. These depend upon a choice of $n$ points in hyperbolic $3$-space, called monopole points. We investigate the limiting behavior of various constant scalar curvature metrics in these conformal classes as the points approach each other, or as the points tend to the boundary of hyperbolic space. There is a close connection to the orbifold Yamabe problem, which we show is not always solvable (in contrast to the case of compact manifolds). In particular, we show that there is no constant scalar curvature orbifold metric in the conformal class of a conformally compactified non-flat hyperkähler ALE space in dimension four.},
affiliation = {University of Wisconsin Department of Mathematics 480 Lincoln Drive Madison, WI 53706 (USA)},
author = {Viaclovsky, Jeff A.},
journal = {Annales de l’institut Fourier},
keywords = {Monopole Metrics; Orbifold Yamabe Problem; monopole metrics; orbifold Yamabe problem; conformal classes; Yamabe minimizers},
language = {eng},
number = {7},
pages = {2503-2543},
publisher = {Association des Annales de l’institut Fourier},
title = {Monopole metrics and the orbifold Yamabe problem},
url = {http://eudml.org/doc/116344},
volume = {60},
year = {2010},
}

TY - JOUR
AU - Viaclovsky, Jeff A.
TI - Monopole metrics and the orbifold Yamabe problem
JO - Annales de l’institut Fourier
PY - 2010
PB - Association des Annales de l’institut Fourier
VL - 60
IS - 7
SP - 2503
EP - 2543
AB - We consider the self-dual conformal classes on $n \# \mathbb{CP}^2$ discovered by LeBrun. These depend upon a choice of $n$ points in hyperbolic $3$-space, called monopole points. We investigate the limiting behavior of various constant scalar curvature metrics in these conformal classes as the points approach each other, or as the points tend to the boundary of hyperbolic space. There is a close connection to the orbifold Yamabe problem, which we show is not always solvable (in contrast to the case of compact manifolds). In particular, we show that there is no constant scalar curvature orbifold metric in the conformal class of a conformally compactified non-flat hyperkähler ALE space in dimension four.
LA - eng
KW - Monopole Metrics; Orbifold Yamabe Problem; monopole metrics; orbifold Yamabe problem; conformal classes; Yamabe minimizers
UR - http://eudml.org/doc/116344
ER -

References

top
  1. Kazuo Akutagawa, Yamabe metrics of positive scalar curvature and conformally flat manifolds, Differential Geom. Appl. 4 (1994), 239-258 Zbl0810.53030MR1299397
  2. Kazuo Akutagawa, Convergence for Yamabe metrics of positive scalar curvature with integral bounds on curvature, Pacific J. Math. 175 (1996), 307-335 Zbl0881.53036MR1432834
  3. Kazuo Akutagawa, Computations of the orbifold Yamabe invariant, (2010) Zbl1248.53034
  4. Kazuo Akutagawa, Boris Botvinnik, Yamabe metrics on cylindrical manifolds, Geom. Funct. Anal. 13 (2003), 259-333 Zbl1161.53344MR1982146
  5. Kazuo Akutagawa, Boris Botvinnik, The Yamabe invariants of orbifolds and cylindrical manifolds, and -harmonic spinors, J. Reine Angew. Math. 574 (2004), 121-146 Zbl1055.53035MR2099112
  6. Michael T. Anderson, Ricci curvature bounds and Einstein metrics on compact manifolds, J. Amer. Math. Soc. 2 (1989), 455-490 Zbl0694.53045MR999661
  7. Michael T. Anderson, Orbifold compactness for spaces of Riemannian metrics and applications, Math. Ann. 331 (2005), 739-778 Zbl1071.53025MR2148795
  8. Michael T. Anderson, Peter B. Kronheimer, Claude LeBrun, Complete Ricci-flat Kähler manifolds of infinite topological type, Comm. Math. Phys. 125 (1989), 637-642 Zbl0734.53051MR1024931
  9. Thierry Aubin, Nonlinear analysis on manifolds. Monge-Ampère equations, 252 (1982), Springer-Verlag, New York Zbl0512.53044MR681859
  10. Shigetoshi Bando, Bubbling out of Einstein manifolds, Tohoku Math. J. (2) 42 (1990), 205-216 Zbl0719.53025MR1053949
  11. Robert Bartnik, The mass of an asymptotically flat manifold, Comm. Pure Appl. Math. 39 (1986), 661-693 Zbl0598.53045MR849427
  12. Luis A. Caffarelli, Basilis Gidas, Joel Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math. 42 (1989), 271-297 Zbl0702.35085MR982351
  13. Sun-Yung A. Chang, Matthew J. Gursky, Paul C. Yang, An equation of Monge-Ampère type in conformal geometry, and four-manifolds of positive Ricci curvature, Ann. of Math. (2) 155 (2002), 709-787 Zbl1031.53062MR1923964
  14. Sun-Yung A. Chang, Jie Qing, Paul Yang, On a conformal gap and finiteness theorem for a class of four-manifolds, Geom. Funct. Anal. 17 (2007), 404-434 Zbl1124.53020MR2322490
  15. Xiuxiong Chen, Claude Lebrun, Brian Weber, On conformally Kähler, Einstein manifolds, J. Amer. Math. Soc. 21 (2008), 1137-1168 Zbl1208.53072MR2425183
  16. Xiuxiong Chen, Brian Weber, Moduli spaces of critical riemannian metrics with norm curvature bounds, (2007) Zbl1205.53074
  17. S. Donaldson, R. Friedman, Connected sums of self-dual manifolds and deformations of singular spaces, Nonlinearity 2 (1989), 197-239 Zbl0671.53029MR994091
  18. Andreas Floer, Self-dual conformal structures on , J. Differential Geom. 33 (1991), 551-573 Zbl0736.53046MR1094469
  19. G.W. Gibbons, S.W. Hawking, Gravitational multi-instantons, Physics Letters B 78 (1978), 430-432 
  20. Matthew J. Gursky, Jeff A. Viaclovsky, A fully nonlinear equation on four-manifolds with positive scalar curvature, J. Differential Geom. 63 (2003), 131-154 Zbl1070.53018MR2015262
  21. Emmanuel Hebey, From the Yamabe problem to the equivariant Yamabe problem, Actes de la Table Ronde de Géométrie Différentielle (Luminy, 1992) 1 (1996), 377-402, Soc. Math. France, Paris Zbl0880.53035MR1427765
  22. N. J. Hitchin, Polygons and gravitons, Math. Proc. Cambridge Philos. Soc. 85 (1979), 465-476 Zbl0405.53016MR520463
  23. N. J. Hitchin, Einstein metrics and the eta-invariant, Boll. Un. Mat. Ital. B (7) 11 (1997), 95-105 Zbl0973.53519MR1456253
  24. Nobuhiro Honda, Degenerations of LeBrun twistor spaces, (2010) Zbl1205.32019
  25. Nobuhiro Honda, Jeff Viaclovsky, Conformal symmetries of self-dual hyperbolic monopole metrics, (2009) Zbl1276.53029
  26. Dominic Joyce, Explicit construction of self-dual -manifolds, Duke Math. J. 77 (1995), 519-552 Zbl0855.57028MR1324633
  27. Dominic Joyce, Constant scalar curvature metrics on connected sums, Int. J. Math. Math. Sci. (2003), 405-450 Zbl1026.53019MR1961016
  28. Osamu Kobayashi, Scalar curvature of a metric with unit volume, Math. Ann. 279 (1987), 253-265 Zbl0611.53037MR919505
  29. P. B. Kronheimer, The construction of ALE spaces as hyper-Kähler quotients, J. Differential Geom. 29 (1989), 665-683 Zbl0671.53045MR992334
  30. Wolfgang Kühnel, Conformal transformations between Einstein spaces, Conformal geometry (Bonn, 1985/1986) (1988), 105-146, Vieweg, Braunschweig Zbl0667.53039MR979791
  31. Claude LeBrun, Counter-examples to the generalized positive action conjecture, Comm. Math. Phys. 118 (1988), 591-596 Zbl0659.53050MR962489
  32. Claude LeBrun, Explicit self-dual metrics on , J. Differential Geom. 34 (1991), 223-253 Zbl0725.53067MR1114461
  33. Claude LeBrun, Shin Nayatani, Takashi Nitta, Self-dual manifolds with positive Ricci curvature, Math. Z. 224 (1997), 49-63 Zbl0868.53032MR1427703
  34. John M. Lee, Thomas H. Parker, The Yamabe problem, Bull. Amer. Math. Soc. (N.S.) 17 (1987), 37-91 Zbl0633.53062MR888880
  35. Rafe Mazzeo, Daniel Pollack, Karen Uhlenbeck, Connected sum constructions for constant scalar curvature metrics, Topol. Methods Nonlinear Anal. 6 (1995), 207-233 Zbl0866.58069MR1399537
  36. Hiraku Nakajima, Self-duality of ALE Ricci-flat -manifolds and positive mass theorem, Recent topics in differential and analytic geometry 18 (1990), 385-396, Academic Press, Boston, MA Zbl0744.53025MR1145266
  37. Hiraku Nakajima, A convergence theorem for Einstein metrics and the ALE spaces [ MR1193019 (93k:53044)], Selected papers on number theory, algebraic geometry, and differential geometry 160 (1994), 79-94, Amer. Math. Soc., Providence, RI Zbl0808.53046MR1308542
  38. Morio Obata, The conjectures on conformal transformations of Riemannian manifolds, J. Differential Geometry 6 (1971/72), 247-258 Zbl0236.53042MR303464
  39. Y. Sun Poon, Compact self-dual manifolds with positive scalar curvature, J. Differential Geom. 24 (1986), 97-132 Zbl0583.53054MR857378
  40. John G. Ratcliffe, Foundations of hyperbolic manifolds, 149 (2006), Springer, New York Zbl1106.51009MR2249478
  41. Richard Schoen, Conformal deformation of a Riemannian metric to constant scalar curvature, J. Differential Geom. 20 (1984), 479-495 Zbl0576.53028MR788292
  42. Richard Schoen, On the number of constant scalar curvature metrics in a conformal class, Differential geometry 52 (1991), 311-320, Longman Sci. Tech., Harlow Zbl0733.53021MR1173050
  43. Yoshihiro Tashiro, Complete Riemannian manifolds and some vector fields, Trans. Amer. Math. Soc. 117 (1965), 251-275 Zbl0136.17701MR174022
  44. Gang Tian, On Calabi’s conjecture for complex surfaces with positive first Chern class, Invent. Math. 101 (1990), 101-172 Zbl0716.32019MR1055713
  45. Gang Tian, Jeff Viaclovsky, Bach-flat asymptotically locally Euclidean metrics, Invent. Math. 160 (2005), 357-415 Zbl1085.53030MR2138071
  46. Gang Tian, Jeff Viaclovsky, Moduli spaces of critical Riemannian metrics in dimension four, Adv. Math. 196 (2005), 346-372 Zbl1252.53045MR2166311
  47. Gang Tian, Jeff Viaclovsky, Volume growth, curvature decay, and critical metrics, Comment. Math. Helv. 83 (2008), 889-911 Zbl1154.53024MR2442967

NotesEmbed ?

top

You must be logged in to post comments.