Monopole metrics and the orbifold Yamabe problem
- [1] University of Wisconsin Department of Mathematics 480 Lincoln Drive Madison, WI 53706 (USA)
Annales de l’institut Fourier (2010)
- Volume: 60, Issue: 7, page 2503-2543
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topViaclovsky, Jeff A.. "Monopole metrics and the orbifold Yamabe problem." Annales de l’institut Fourier 60.7 (2010): 2503-2543. <http://eudml.org/doc/116344>.
@article{Viaclovsky2010,
abstract = {We consider the self-dual conformal classes on $n \# \mathbb\{CP\}^2$ discovered by LeBrun. These depend upon a choice of $n$ points in hyperbolic $3$-space, called monopole points. We investigate the limiting behavior of various constant scalar curvature metrics in these conformal classes as the points approach each other, or as the points tend to the boundary of hyperbolic space. There is a close connection to the orbifold Yamabe problem, which we show is not always solvable (in contrast to the case of compact manifolds). In particular, we show that there is no constant scalar curvature orbifold metric in the conformal class of a conformally compactified non-flat hyperkähler ALE space in dimension four.},
affiliation = {University of Wisconsin Department of Mathematics 480 Lincoln Drive Madison, WI 53706 (USA)},
author = {Viaclovsky, Jeff A.},
journal = {Annales de l’institut Fourier},
keywords = {Monopole Metrics; Orbifold Yamabe Problem; monopole metrics; orbifold Yamabe problem; conformal classes; Yamabe minimizers},
language = {eng},
number = {7},
pages = {2503-2543},
publisher = {Association des Annales de l’institut Fourier},
title = {Monopole metrics and the orbifold Yamabe problem},
url = {http://eudml.org/doc/116344},
volume = {60},
year = {2010},
}
TY - JOUR
AU - Viaclovsky, Jeff A.
TI - Monopole metrics and the orbifold Yamabe problem
JO - Annales de l’institut Fourier
PY - 2010
PB - Association des Annales de l’institut Fourier
VL - 60
IS - 7
SP - 2503
EP - 2543
AB - We consider the self-dual conformal classes on $n \# \mathbb{CP}^2$ discovered by LeBrun. These depend upon a choice of $n$ points in hyperbolic $3$-space, called monopole points. We investigate the limiting behavior of various constant scalar curvature metrics in these conformal classes as the points approach each other, or as the points tend to the boundary of hyperbolic space. There is a close connection to the orbifold Yamabe problem, which we show is not always solvable (in contrast to the case of compact manifolds). In particular, we show that there is no constant scalar curvature orbifold metric in the conformal class of a conformally compactified non-flat hyperkähler ALE space in dimension four.
LA - eng
KW - Monopole Metrics; Orbifold Yamabe Problem; monopole metrics; orbifold Yamabe problem; conformal classes; Yamabe minimizers
UR - http://eudml.org/doc/116344
ER -
References
top- Kazuo Akutagawa, Yamabe metrics of positive scalar curvature and conformally flat manifolds, Differential Geom. Appl. 4 (1994), 239-258 Zbl0810.53030MR1299397
- Kazuo Akutagawa, Convergence for Yamabe metrics of positive scalar curvature with integral bounds on curvature, Pacific J. Math. 175 (1996), 307-335 Zbl0881.53036MR1432834
- Kazuo Akutagawa, Computations of the orbifold Yamabe invariant, (2010) Zbl1248.53034
- Kazuo Akutagawa, Boris Botvinnik, Yamabe metrics on cylindrical manifolds, Geom. Funct. Anal. 13 (2003), 259-333 Zbl1161.53344MR1982146
- Kazuo Akutagawa, Boris Botvinnik, The Yamabe invariants of orbifolds and cylindrical manifolds, and -harmonic spinors, J. Reine Angew. Math. 574 (2004), 121-146 Zbl1055.53035MR2099112
- Michael T. Anderson, Ricci curvature bounds and Einstein metrics on compact manifolds, J. Amer. Math. Soc. 2 (1989), 455-490 Zbl0694.53045MR999661
- Michael T. Anderson, Orbifold compactness for spaces of Riemannian metrics and applications, Math. Ann. 331 (2005), 739-778 Zbl1071.53025MR2148795
- Michael T. Anderson, Peter B. Kronheimer, Claude LeBrun, Complete Ricci-flat Kähler manifolds of infinite topological type, Comm. Math. Phys. 125 (1989), 637-642 Zbl0734.53051MR1024931
- Thierry Aubin, Nonlinear analysis on manifolds. Monge-Ampère equations, 252 (1982), Springer-Verlag, New York Zbl0512.53044MR681859
- Shigetoshi Bando, Bubbling out of Einstein manifolds, Tohoku Math. J. (2) 42 (1990), 205-216 Zbl0719.53025MR1053949
- Robert Bartnik, The mass of an asymptotically flat manifold, Comm. Pure Appl. Math. 39 (1986), 661-693 Zbl0598.53045MR849427
- Luis A. Caffarelli, Basilis Gidas, Joel Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math. 42 (1989), 271-297 Zbl0702.35085MR982351
- Sun-Yung A. Chang, Matthew J. Gursky, Paul C. Yang, An equation of Monge-Ampère type in conformal geometry, and four-manifolds of positive Ricci curvature, Ann. of Math. (2) 155 (2002), 709-787 Zbl1031.53062MR1923964
- Sun-Yung A. Chang, Jie Qing, Paul Yang, On a conformal gap and finiteness theorem for a class of four-manifolds, Geom. Funct. Anal. 17 (2007), 404-434 Zbl1124.53020MR2322490
- Xiuxiong Chen, Claude Lebrun, Brian Weber, On conformally Kähler, Einstein manifolds, J. Amer. Math. Soc. 21 (2008), 1137-1168 Zbl1208.53072MR2425183
- Xiuxiong Chen, Brian Weber, Moduli spaces of critical riemannian metrics with norm curvature bounds, (2007) Zbl1205.53074
- S. Donaldson, R. Friedman, Connected sums of self-dual manifolds and deformations of singular spaces, Nonlinearity 2 (1989), 197-239 Zbl0671.53029MR994091
- Andreas Floer, Self-dual conformal structures on , J. Differential Geom. 33 (1991), 551-573 Zbl0736.53046MR1094469
- G.W. Gibbons, S.W. Hawking, Gravitational multi-instantons, Physics Letters B 78 (1978), 430-432
- Matthew J. Gursky, Jeff A. Viaclovsky, A fully nonlinear equation on four-manifolds with positive scalar curvature, J. Differential Geom. 63 (2003), 131-154 Zbl1070.53018MR2015262
- Emmanuel Hebey, From the Yamabe problem to the equivariant Yamabe problem, Actes de la Table Ronde de Géométrie Différentielle (Luminy, 1992) 1 (1996), 377-402, Soc. Math. France, Paris Zbl0880.53035MR1427765
- N. J. Hitchin, Polygons and gravitons, Math. Proc. Cambridge Philos. Soc. 85 (1979), 465-476 Zbl0405.53016MR520463
- N. J. Hitchin, Einstein metrics and the eta-invariant, Boll. Un. Mat. Ital. B (7) 11 (1997), 95-105 Zbl0973.53519MR1456253
- Nobuhiro Honda, Degenerations of LeBrun twistor spaces, (2010) Zbl1205.32019
- Nobuhiro Honda, Jeff Viaclovsky, Conformal symmetries of self-dual hyperbolic monopole metrics, (2009) Zbl1276.53029
- Dominic Joyce, Explicit construction of self-dual -manifolds, Duke Math. J. 77 (1995), 519-552 Zbl0855.57028MR1324633
- Dominic Joyce, Constant scalar curvature metrics on connected sums, Int. J. Math. Math. Sci. (2003), 405-450 Zbl1026.53019MR1961016
- Osamu Kobayashi, Scalar curvature of a metric with unit volume, Math. Ann. 279 (1987), 253-265 Zbl0611.53037MR919505
- P. B. Kronheimer, The construction of ALE spaces as hyper-Kähler quotients, J. Differential Geom. 29 (1989), 665-683 Zbl0671.53045MR992334
- Wolfgang Kühnel, Conformal transformations between Einstein spaces, Conformal geometry (Bonn, 1985/1986) (1988), 105-146, Vieweg, Braunschweig Zbl0667.53039MR979791
- Claude LeBrun, Counter-examples to the generalized positive action conjecture, Comm. Math. Phys. 118 (1988), 591-596 Zbl0659.53050MR962489
- Claude LeBrun, Explicit self-dual metrics on , J. Differential Geom. 34 (1991), 223-253 Zbl0725.53067MR1114461
- Claude LeBrun, Shin Nayatani, Takashi Nitta, Self-dual manifolds with positive Ricci curvature, Math. Z. 224 (1997), 49-63 Zbl0868.53032MR1427703
- John M. Lee, Thomas H. Parker, The Yamabe problem, Bull. Amer. Math. Soc. (N.S.) 17 (1987), 37-91 Zbl0633.53062MR888880
- Rafe Mazzeo, Daniel Pollack, Karen Uhlenbeck, Connected sum constructions for constant scalar curvature metrics, Topol. Methods Nonlinear Anal. 6 (1995), 207-233 Zbl0866.58069MR1399537
- Hiraku Nakajima, Self-duality of ALE Ricci-flat -manifolds and positive mass theorem, Recent topics in differential and analytic geometry 18 (1990), 385-396, Academic Press, Boston, MA Zbl0744.53025MR1145266
- Hiraku Nakajima, A convergence theorem for Einstein metrics and the ALE spaces [ MR1193019 (93k:53044)], Selected papers on number theory, algebraic geometry, and differential geometry 160 (1994), 79-94, Amer. Math. Soc., Providence, RI Zbl0808.53046MR1308542
- Morio Obata, The conjectures on conformal transformations of Riemannian manifolds, J. Differential Geometry 6 (1971/72), 247-258 Zbl0236.53042MR303464
- Y. Sun Poon, Compact self-dual manifolds with positive scalar curvature, J. Differential Geom. 24 (1986), 97-132 Zbl0583.53054MR857378
- John G. Ratcliffe, Foundations of hyperbolic manifolds, 149 (2006), Springer, New York Zbl1106.51009MR2249478
- Richard Schoen, Conformal deformation of a Riemannian metric to constant scalar curvature, J. Differential Geom. 20 (1984), 479-495 Zbl0576.53028MR788292
- Richard Schoen, On the number of constant scalar curvature metrics in a conformal class, Differential geometry 52 (1991), 311-320, Longman Sci. Tech., Harlow Zbl0733.53021MR1173050
- Yoshihiro Tashiro, Complete Riemannian manifolds and some vector fields, Trans. Amer. Math. Soc. 117 (1965), 251-275 Zbl0136.17701MR174022
- Gang Tian, On Calabi’s conjecture for complex surfaces with positive first Chern class, Invent. Math. 101 (1990), 101-172 Zbl0716.32019MR1055713
- Gang Tian, Jeff Viaclovsky, Bach-flat asymptotically locally Euclidean metrics, Invent. Math. 160 (2005), 357-415 Zbl1085.53030MR2138071
- Gang Tian, Jeff Viaclovsky, Moduli spaces of critical Riemannian metrics in dimension four, Adv. Math. 196 (2005), 346-372 Zbl1252.53045MR2166311
- Gang Tian, Jeff Viaclovsky, Volume growth, curvature decay, and critical metrics, Comment. Math. Helv. 83 (2008), 889-911 Zbl1154.53024MR2442967
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.