On Calabi's conjecture for complex surfaces with positive first Chern class.

G. Tian

Inventiones mathematicae (1990)

  • Volume: 101, Issue: 1, page 101-172
  • ISSN: 0020-9910; 1432-1297/e

How to cite

top

Tian, G.. "On Calabi's conjecture for complex surfaces with positive first Chern class.." Inventiones mathematicae 101.1 (1990): 101-172. <http://eudml.org/doc/143800>.

@article{Tian1990,
author = {Tian, G.},
journal = {Inventiones mathematicae},
keywords = {complex Monge-Ampère-equation; existence of Kähler-Einstein metrics; compact complex surfaces; positive first Chern class},
number = {1},
pages = {101-172},
title = {On Calabi's conjecture for complex surfaces with positive first Chern class.},
url = {http://eudml.org/doc/143800},
volume = {101},
year = {1990},
}

TY - JOUR
AU - Tian, G.
TI - On Calabi's conjecture for complex surfaces with positive first Chern class.
JO - Inventiones mathematicae
PY - 1990
VL - 101
IS - 1
SP - 101
EP - 172
KW - complex Monge-Ampère-equation; existence of Kähler-Einstein metrics; compact complex surfaces; positive first Chern class
UR - http://eudml.org/doc/143800
ER -

Citations in EuDML Documents

top
  1. Gábor Székelyhidi, The Calabi functional on a ruled surface
  2. Jeff A. Viaclovsky, Monopole metrics and the orbifold Yamabe problem
  3. Claudio Arezzo, Alessandro Ghigi, Symmetries and Kähler-Einstein metrics
  4. X. X. Chen, G. Tian, Geometry of Kähler metrics and foliations by holomorphic discs
  5. Vestislav Apostolov, Oleg Muškarov, Weakly-Einstein hermitian surfaces
  6. Olivier Biquard, Métriques kählériennes à courbure scalaire constante : unicité, stabilité
  7. Jean-Pierre Bourguignon, Métriques d'Einstein-Kähler sur les variétés de Fano : obstructions et existence

NotesEmbed ?

top

You must be logged in to post comments.