Une opérade anticyclique sur les arbustes
- [1] Université de Lyon ; Université Lyon 1 ; CNRS, UMR5208, Institut Camille Jordan, 43 blvd du 11 novembre 1918, F-69622 Villeurbanne-Cedex, France
Annales mathématiques Blaise Pascal (2010)
- Volume: 17, Issue: 1, page 17-45
- ISSN: 1259-1734
Access Full Article
topAbstract
topHow to cite
topReferences
top- F. Bergeron, G. Labelle, P. Leroux, Combinatorial species and tree-like structures, 67 (1998), Cambridge University Press, Cambridge Zbl0888.05001MR1629341
- F. Chapoton, On some anticyclic operads, Algebr. Geom. Topol. 5 (2005), 53-69 (electronic) Zbl1060.18004MR2135545
- F. Chapoton, The anticyclic operad of moulds, Int. Math. Res. Not. IMRN (2007) Zbl1149.18004MR2363304
- Frédéric Chapoton, A bijection between shrubs and series-parallel posets, 20th Annual International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2008) (2008)
- Frédéric Chapoton, Florent Hivert, Jean-Christophe Novelli, Jean-Yves Thibon, An operational calculus for the mould operad, Int. Math. Res. Not. IMRN (2008) Zbl1146.18301MR2429249
- Muriel Livernet, A rigidity theorem for pre-Lie algebras, J. Pure Appl. Algebra 207 (2006), 1-18 Zbl1134.17001MR2244257
- Jean-Louis Loday, Dialgebras, Dialgebras and related operads 1763 (2001), 7-66, Springer, Berlin Zbl0999.17002MR1860994
- Jean-Louis Loday, Maria O. Ronco, Combinatorial Hopf algebras, (2008) Zbl1217.16033
- Richard P. Stanley, Enumeration of posets generated by disjoint unions and ordinal sums, Proc. Amer. Math. Soc. 45 (1974), 295-299 Zbl0297.05009MR351928
- Richard P. Stanley, Enumerative combinatorics. Vol. 2, 62 (1999), Cambridge University Press, Cambridge Zbl0928.05001MR1676282