Actions hamiltoniennes

Thomas Delzant[1]; Christophe Wacheux[2]

  • [1] Institut de Recherche Mathématique Avancée, UMR 7501 Université de Strasbourg et CNRS 7 rue René Descartes, 67000 Strasbourg, France
  • [2] Institut de Recherche Mathématiques de Rennes (IRMAR), UMR 6625 Université Rennes 1 et CNRS, 263 Avenue du Général Leclerc CS 74205 35042 Rennes, France

Les cours du CIRM (2010)

  • Volume: 1, Issue: 1, page 23-31
  • ISSN: 2108-7164

How to cite

top

Delzant, Thomas, and Wacheux, Christophe. "Actions hamiltoniennes." Les cours du CIRM 1.1 (2010): 23-31. <http://eudml.org/doc/116363>.

@article{Delzant2010,
affiliation = {Institut de Recherche Mathématique Avancée, UMR 7501 Université de Strasbourg et CNRS 7 rue René Descartes, 67000 Strasbourg, France; Institut de Recherche Mathématiques de Rennes (IRMAR), UMR 6625 Université Rennes 1 et CNRS, 263 Avenue du Général Leclerc CS 74205 35042 Rennes, France},
author = {Delzant, Thomas, Wacheux, Christophe},
journal = {Les cours du CIRM},
language = {fre},
number = {1},
pages = {23-31},
publisher = {CIRM},
title = {Actions hamiltoniennes},
url = {http://eudml.org/doc/116363},
volume = {1},
year = {2010},
}

TY - JOUR
AU - Delzant, Thomas
AU - Wacheux, Christophe
TI - Actions hamiltoniennes
JO - Les cours du CIRM
PY - 2010
PB - CIRM
VL - 1
IS - 1
SP - 23
EP - 31
LA - fre
UR - http://eudml.org/doc/116363
ER -

References

top
  1. Bredon, G.E., Introduction to compact transformation groups Pure and Applied Mathematics, Vol. 46. Academic Press, New York-London, 1972. Zbl0246.57017MR413144
  2. Delzant, T., Classification des actions hamiltoniennes complètement intégrables de rang 2, Ann. Global Anal. Geom. 8 (1990), no. 1, 87–112. Zbl0711.58017MR1075241
  3. Guillemin, V., Moment maps and combinatorial invariants of Hamiltonian 𝕋 n -spaces . -Boston  : Birkhäuser, 1994. Zbl0828.58001MR1301331
  4. Knop, F., Van Steirteghem, B., Classification of smooth affine spherical varieties, Transform. Groups 11 (2006), no.3, 495–516. Zbl1120.14042MR2264463
  5. Knop, F., Automorphisms of multiplicity-free Hamiltonian manifolds , arXiv :1002.4256 Zbl1226.53082
  6. Losev, I., Proof of the Knop conjecture Annales de l’institut Fourier, 59 no.3 (2009), p. 1105-1134. Zbl1191.14075MR2543664
  7. McDuff, D., Salamon, D., Introduction to symplectic topology, 2nd edition, Oxford University Press, 1998. Zbl0844.58029MR1702941
  8. Souriau, J.-M., Structure of Dynamical Systems  : A Symplectic View of Physics, Springer Verlag, 1997. MR1461545
  9. Weistein, A., Lectures on symplectic geometry , Providence RI  : American mathematical society, 1977. 
  10. Woodward, C., Spherical varieties and existence of invariant Kähler structures, Duke Math. J. 93 (1998), no. 2, 345–377. Zbl0979.53085MR1625995
  11. Woodward, C., Multiplicity-free Hamiltonian actions need not be Kähler, Invent. Math. 131 (1998), no. 2, 311–319. Zbl0902.58014MR1608579

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.