Proof of the Knop conjecture

Ivan V. Losev[1]

  • [1] Massachusetts Institute of Technology Department of Mathematics Room 2-101 77 Massachusetts Avenue Cambridge MA 02139 (USA)

Annales de l’institut Fourier (2009)

  • Volume: 59, Issue: 3, page 1105-1134
  • ISSN: 0373-0956

Abstract

top
In this paper we prove the Knop conjecture asserting that two smooth affine spherical varieties with the same weight monoid are equivariantly isomorphic. We also state and prove a uniqueness property for (not necessarily smooth) affine spherical varieties.

How to cite

top

Losev, Ivan V.. "Proof of the Knop conjecture." Annales de l’institut Fourier 59.3 (2009): 1105-1134. <http://eudml.org/doc/10418>.

@article{Losev2009,
abstract = {In this paper we prove the Knop conjecture asserting that two smooth affine spherical varieties with the same weight monoid are equivariantly isomorphic. We also state and prove a uniqueness property for (not necessarily smooth) affine spherical varieties.},
affiliation = {Massachusetts Institute of Technology Department of Mathematics Room 2-101 77 Massachusetts Avenue Cambridge MA 02139 (USA)},
author = {Losev, Ivan V.},
journal = {Annales de l’institut Fourier},
keywords = {Spherical varieties; weight monoids; systems of spherical roots; multiplicity free Hamiltonian actions; spherical varieties},
language = {eng},
number = {3},
pages = {1105-1134},
publisher = {Association des Annales de l’institut Fourier},
title = {Proof of the Knop conjecture},
url = {http://eudml.org/doc/10418},
volume = {59},
year = {2009},
}

TY - JOUR
AU - Losev, Ivan V.
TI - Proof of the Knop conjecture
JO - Annales de l’institut Fourier
PY - 2009
PB - Association des Annales de l’institut Fourier
VL - 59
IS - 3
SP - 1105
EP - 1134
AB - In this paper we prove the Knop conjecture asserting that two smooth affine spherical varieties with the same weight monoid are equivariantly isomorphic. We also state and prove a uniqueness property for (not necessarily smooth) affine spherical varieties.
LA - eng
KW - Spherical varieties; weight monoids; systems of spherical roots; multiplicity free Hamiltonian actions; spherical varieties
UR - http://eudml.org/doc/10418
ER -

References

top
  1. A. Bialynicki-Birula, Some properties of the decompositions of algebraic varieties determined by an action of a torus, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 24 (1976), 667-674 Zbl0355.14015MR453766
  2. M. Brion, Sur l’image de l’application moment, 1296 (1987), Springer Verlag Zbl0667.58012MR932055
  3. M. Brion, D. Luna, Th. Vust, Espaces homogènes sphériques, Invent. Math. 84 (1986), 617-632 Zbl0604.14047MR837530
  4. R. Camus, Variétés sphériques affines lisses, (2001) 
  5. T. Delzant, Hamiltoniens périodiques et images convexes de l’application moment, Bul. Soc. Math. France 116 (1988), 315-339 Zbl0676.58029MR984900
  6. T. Delzant, Classification des actions hamiltoniennes complètement intégrables de rang deux, Ann. Global. Anal. Geom. 8 (1990), 87-112 Zbl0711.58017MR1075241
  7. F. Grosshans, Constructing invariant polynomials via Tschirnhaus transformations, 1278 (1987), Springer Verlag Zbl0659.14010MR924168
  8. V. Guillemin, L. Jeffrey, R. Sjamaar, Symplectic implosion, Transform. Groups 7 (2002), 155-184 Zbl1015.53054MR1903116
  9. F. Kirwan, Convexity properties of the moment mapping III, Invent. Math. 77 (1984), 547-552 Zbl0561.58016MR759257
  10. F. Knop, The Luna-Vust theory of spherical embeddings, Proceedings of the Hydebarad conference on algebraic groups (1991), 225-249, Manoj Prakashan, Madras Zbl0812.20023MR1131314
  11. F. Knop, The asymptotic behaviour of invariant collective motion, Invent. Math. 114 (1994), 309-328 Zbl0802.58024MR1253195
  12. F. Knop, Automorphisms, root systems and compactifications, J. Amer. Math. Soc. 9 (1996), 153-174 Zbl0862.14034MR1311823
  13. F. Knop, B. Van Steirteghem, Classification of smooth affine spherical varieties, Transform. Groups 11 (2006), 495-516 Zbl1120.14042MR2264463
  14. M. Kramer, Spharische Untergruppen in kompakten zusammenhangenden Liegruppen, Compos. Math. 38 (1979), 129-153 Zbl0402.22006MR528837
  15. A.S. Leahy, A classification of multiplicity free representations, J. Lie Theory 8 (1998), 376-391 Zbl0910.22015MR1650378
  16. I. Losev, Uniqueness properties for spherical homogeneous spaces Zbl1175.14035
  17. D. Luna, Grosses cellules pour les variétés sphériques, 9 (1997), Cambridge University Press Zbl0902.14037MR1635686
  18. D. Luna, Variétés sphériques de type A, IHES Publ. Math. 94 (2001), 161-226 Zbl1085.14039MR1896179
  19. A.L. Onishchik, E.B. Vinberg, Lie groups and algebraic groups, (1990), Springer Verlag Zbl0722.22004MR1064110
  20. V.L. Popov, Picard groups of homogeneous spaces of linear algebraic groups and one-dimensional homogeneous vector bundles, Math. USSR-Izv 7 (1973), 301-327 Zbl0301.14018
  21. V.L. Popov, Contractions of the actions of reductive algebraic groups, Math. USSR Sborhik 58 (1987), 311-355 Zbl0627.14033MR865764
  22. Th. Vust, Plongement d’espaces symétriques algébriques: une classification, Ann. Sc. Norm. Super. Pisa, Ser. IV 17 (1990), 165-194 Zbl0728.14041MR1076251
  23. B. Wasserman, Wonderful varieties of rank 2, Transform. Groups 1 (1996), 375-403 Zbl0921.14031MR1424449
  24. C. Woodward, The classification of transversal multiplicity-free Hamiltonian actions, Ann. Global. Anal. Geom. 14 (1996), 3-42 Zbl0877.58022MR1375064
  25. C. Woodward, Spherical varieties and existence of invariant Kahler structure, Duke Math. J 93 (1998), 345-377 Zbl0979.53085MR1625995

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.