Proof of the Knop conjecture
- [1] Massachusetts Institute of Technology Department of Mathematics Room 2-101 77 Massachusetts Avenue Cambridge MA 02139 (USA)
Annales de l’institut Fourier (2009)
- Volume: 59, Issue: 3, page 1105-1134
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topLosev, Ivan V.. "Proof of the Knop conjecture." Annales de l’institut Fourier 59.3 (2009): 1105-1134. <http://eudml.org/doc/10418>.
@article{Losev2009,
abstract = {In this paper we prove the Knop conjecture asserting that two smooth affine spherical varieties with the same weight monoid are equivariantly isomorphic. We also state and prove a uniqueness property for (not necessarily smooth) affine spherical varieties.},
affiliation = {Massachusetts Institute of Technology Department of Mathematics Room 2-101 77 Massachusetts Avenue Cambridge MA 02139 (USA)},
author = {Losev, Ivan V.},
journal = {Annales de l’institut Fourier},
keywords = {Spherical varieties; weight monoids; systems of spherical roots; multiplicity free Hamiltonian actions; spherical varieties},
language = {eng},
number = {3},
pages = {1105-1134},
publisher = {Association des Annales de l’institut Fourier},
title = {Proof of the Knop conjecture},
url = {http://eudml.org/doc/10418},
volume = {59},
year = {2009},
}
TY - JOUR
AU - Losev, Ivan V.
TI - Proof of the Knop conjecture
JO - Annales de l’institut Fourier
PY - 2009
PB - Association des Annales de l’institut Fourier
VL - 59
IS - 3
SP - 1105
EP - 1134
AB - In this paper we prove the Knop conjecture asserting that two smooth affine spherical varieties with the same weight monoid are equivariantly isomorphic. We also state and prove a uniqueness property for (not necessarily smooth) affine spherical varieties.
LA - eng
KW - Spherical varieties; weight monoids; systems of spherical roots; multiplicity free Hamiltonian actions; spherical varieties
UR - http://eudml.org/doc/10418
ER -
References
top- A. Bialynicki-Birula, Some properties of the decompositions of algebraic varieties determined by an action of a torus, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 24 (1976), 667-674 Zbl0355.14015MR453766
- M. Brion, Sur l’image de l’application moment, 1296 (1987), Springer Verlag Zbl0667.58012MR932055
- M. Brion, D. Luna, Th. Vust, Espaces homogènes sphériques, Invent. Math. 84 (1986), 617-632 Zbl0604.14047MR837530
- R. Camus, Variétés sphériques affines lisses, (2001)
- T. Delzant, Hamiltoniens périodiques et images convexes de l’application moment, Bul. Soc. Math. France 116 (1988), 315-339 Zbl0676.58029MR984900
- T. Delzant, Classification des actions hamiltoniennes complètement intégrables de rang deux, Ann. Global. Anal. Geom. 8 (1990), 87-112 Zbl0711.58017MR1075241
- F. Grosshans, Constructing invariant polynomials via Tschirnhaus transformations, 1278 (1987), Springer Verlag Zbl0659.14010MR924168
- V. Guillemin, L. Jeffrey, R. Sjamaar, Symplectic implosion, Transform. Groups 7 (2002), 155-184 Zbl1015.53054MR1903116
- F. Kirwan, Convexity properties of the moment mapping III, Invent. Math. 77 (1984), 547-552 Zbl0561.58016MR759257
- F. Knop, The Luna-Vust theory of spherical embeddings, Proceedings of the Hydebarad conference on algebraic groups (1991), 225-249, Manoj Prakashan, Madras Zbl0812.20023MR1131314
- F. Knop, The asymptotic behaviour of invariant collective motion, Invent. Math. 114 (1994), 309-328 Zbl0802.58024MR1253195
- F. Knop, Automorphisms, root systems and compactifications, J. Amer. Math. Soc. 9 (1996), 153-174 Zbl0862.14034MR1311823
- F. Knop, B. Van Steirteghem, Classification of smooth affine spherical varieties, Transform. Groups 11 (2006), 495-516 Zbl1120.14042MR2264463
- M. Kramer, Spharische Untergruppen in kompakten zusammenhangenden Liegruppen, Compos. Math. 38 (1979), 129-153 Zbl0402.22006MR528837
- A.S. Leahy, A classification of multiplicity free representations, J. Lie Theory 8 (1998), 376-391 Zbl0910.22015MR1650378
- I. Losev, Uniqueness properties for spherical homogeneous spaces Zbl1175.14035
- D. Luna, Grosses cellules pour les variétés sphériques, 9 (1997), Cambridge University Press Zbl0902.14037MR1635686
- D. Luna, Variétés sphériques de type A, IHES Publ. Math. 94 (2001), 161-226 Zbl1085.14039MR1896179
- A.L. Onishchik, E.B. Vinberg, Lie groups and algebraic groups, (1990), Springer Verlag Zbl0722.22004MR1064110
- V.L. Popov, Picard groups of homogeneous spaces of linear algebraic groups and one-dimensional homogeneous vector bundles, Math. USSR-Izv 7 (1973), 301-327 Zbl0301.14018
- V.L. Popov, Contractions of the actions of reductive algebraic groups, Math. USSR Sborhik 58 (1987), 311-355 Zbl0627.14033MR865764
- Th. Vust, Plongement d’espaces symétriques algébriques: une classification, Ann. Sc. Norm. Super. Pisa, Ser. IV 17 (1990), 165-194 Zbl0728.14041MR1076251
- B. Wasserman, Wonderful varieties of rank 2, Transform. Groups 1 (1996), 375-403 Zbl0921.14031MR1424449
- C. Woodward, The classification of transversal multiplicity-free Hamiltonian actions, Ann. Global. Anal. Geom. 14 (1996), 3-42 Zbl0877.58022MR1375064
- C. Woodward, Spherical varieties and existence of invariant Kahler structure, Duke Math. J 93 (1998), 345-377 Zbl0979.53085MR1625995
Citations in EuDML Documents
top- Thomas Delzant, Christophe Wacheux, Actions hamiltoniennes
- Stavros Argyrios Papadakis, Bart Van Steirteghem, Equivariant degenerations of spherical modules for groups of type
- Paolo Bravi, Classification of spherical varieties
- Chris Woodward, Moment maps and geometric invariant theory—Corrected version (October 2011)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.