An introduction to constructive algebraic analysis and its applications

Alban Quadrat[1]

  • [1] INRIA Sophia Antipolis, 2004 Route des Lucioles BP 93, 06902 Sophia Antipolis cedex, France.

Les cours du CIRM (2010)

  • Volume: 1, Issue: 2, page 281-471
  • ISSN: 2108-7164

How to cite

top

Quadrat, Alban. "An introduction to constructive algebraic analysis and its applications." Les cours du CIRM 1.2 (2010): 281-471. <http://eudml.org/doc/116369>.

@article{Quadrat2010,
affiliation = {INRIA Sophia Antipolis, 2004 Route des Lucioles BP 93, 06902 Sophia Antipolis cedex, France.},
author = {Quadrat, Alban},
journal = {Les cours du CIRM},
language = {eng},
number = {2},
pages = {281-471},
publisher = {CIRM},
title = {An introduction to constructive algebraic analysis and its applications},
url = {http://eudml.org/doc/116369},
volume = {1},
year = {2010},
}

TY - JOUR
AU - Quadrat, Alban
TI - An introduction to constructive algebraic analysis and its applications
JO - Les cours du CIRM
PY - 2010
PB - CIRM
VL - 1
IS - 2
SP - 281
EP - 471
LA - eng
UR - http://eudml.org/doc/116369
ER -

References

top
  1. S. A. Abramov, M. Bronstein, “On solutions of linear functional systems”, in Proceedings of ISSAC’01, 1-6, ACM Press, 2001. MR2044585
  2. M. Auslander, M. Bridger, Stable Module Theory, Memoirs of the American Mathematical Society, 94 American Mathematical Society, 1969. Zbl0204.36402MR269685
  3. R. Baer, “Erweiterung von Gruppen und ihren Isomorphismen”, Mathematische Zeitschrift, 38 (1934), 375-416. Zbl60.0079.04MR1545456
  4. M. Barakat, D. Robertz, “homalg: An abstract package for homological algebra”, J. Algebra Appl., 7 (2008), 299-317, homalg project: http://wwwb.math.rwth-aachen.de/homalg/. Zbl1151.13306MR2431811
  5. M. Barakat, “Spectral filtrations via generalized morphisms”, http://arxiv.org/abs/0904.0240, 30/04/09, submitted for publication. 
  6. M. A. Barkatou, “On rational solutions of systems of linear differential equations”, J. Symbolic computation, 28 (1999), 547-567. Zbl0943.34008MR1731937
  7. M. A. Barkatou, “Factoring systems of linear functional systems using eigenrings”, in Computer Algebra 2006, Latest Advances in Symbolic Algorithms, Proceedings of the Waterloo Workshop, Ontario, Canada (10-12/04/06), I. Kotsireas and E. Zima (Eds.), World Scientific, 22-42. MR2427719
  8. T. Becker, V. Weispfenning, Gröbner Bases. A Computational Approach to Commutative Algebra, Springer, NewYork, 1993. Zbl0772.13010MR1213453
  9. C. M. Bender, G. V. Dunne, L. R. Mead, Underdetermined systems of partial differential equations, J. Mathematical Physics, 41 (2000), 6388-6398. Zbl0977.35036MR1779653
  10. J. E. Bjork, Rings of Differential Operators, North Holland, 1979. Zbl0499.13009MR549189
  11. J. E. Bjork, Analytic 𝒟 -modules and Applications, Kluwer, 1993. Zbl0805.32001MR1232191
  12. Y. A. Blinkov, C. F. Cid, V. P. Gerdt, W. Plesken, D. Robertz, “The MAPLE Package “Janet”: I. Polynomial Systems”, In the proceedings of Computer Algebra in Scientific Computing CASC 2003, V. G. Ganzha, E. W. Mayr, E. V. Vorozhtsov (Eds.), 31-40, http://wwwb.math.rwth-aachen.de/Janet. 
  13. A. Borel et al., Algebraic D-modules, Perspectives in Mathematics, vol. 2, Academic Press, 1987. Zbl0642.32001MR882000
  14. M. S. Boudellioua, A. Quadrat, “Serre’s reduction of linear functional systems”, INRIA report 7214, to appear in Mathematics in Computer Science, 2010. Zbl1275.16003
  15. H. Cartan, S. Eilenberg, Homological Algebra, Princeton University Press, 1956. Zbl0075.24305MR77480
  16. F. Chyzak, A. Quadrat, D. Robertz, “Effective algorithms for parametrizing linear control systems over Ore algebras”, Appl. Algebra Engrg. Comm. Comput., 16 (2005), 319-376. Zbl1109.93018MR2233761
  17. F. Chyzak, A. Quadrat, D. Robertz, “OreModules: A symbolic package for the study of multidimensional linear systems”, in the book Applications of Time-Delay Systems, J. Chiasson and J. -J. Loiseau (Eds.), Lecture Notes in Control and Information Sciences (LNCIS) 352, Springer, 2007, 233-264, OreModules project: http://wwwb.math.rwth-aachen.de/OreModules. Zbl1248.93006MR2309473
  18. F. Chyzak, B. Salvy, “Non-commutative elimination in Ore algebras proves multivariate identities”, J. Symbolic Comput., 26 (1998), 187-227. Zbl0944.05006MR1635242
  19. T. Cluzeau, A. Quadrat, “Factoring and decomposing a class of linear functional systems”, Linear Algebra Appl., 428 (2008), 324-381. Zbl1131.15011MR2372596
  20. T. Cluzeau, A. Quadrat, “OreMorphisms: A homological algebraic package for factoring and decomposing linear functional systems”, in the book Topics in Time-Delay Systems: Analysis, Algorithms and Control, J.-J. Loiseau, W. Michiels, S.-I. Niculescu and R. Sipahi (Eds.), Lecture Notes in Control and Information Sciences (LNCIS) 388, Springer, 2009, 179-196, OreMorphisms project: http://www-sop.inria.fr/members/Alban.Quadrat/OreMorphisms/index.html. MR2573753
  21. T. Cluzeau, A. Quadrat, “Serre’s reduction of linear partial differential systems based on holonomy”, to appear in the proceedings of MTNS 2010, Budapest (Hungary) (05-07/07/10). 
  22. T. Cluzeau, A. Quadrat, “Duality, Auslander transpose, adjoints and stable ranks: A constructive approach”, in preparation, 2010. 
  23. R. Courant, D. Hilbert, Methods of Mathematical Physics, Wiley Classics Library, Wiley, 1989. Zbl0729.00007MR1013360
  24. S. C. Coutinho, M. P. Holland, “Module structure of rings of differential operators”, Proc. London Math. Soc., 57 (1988), 417-432. Zbl0627.16020MR960095
  25. G. Culianez, Formes de Hermite et de Jacobson: Implémentations et applications, internship (INSA de Toulouse) under the supervision of A. Quadrat, INRIA Sophia Antipolis (06-07/05), Jacobson project: http://www-sop.inria.fr/members/Alban.Quadrat/Stages.html. 
  26. F. Dubois, N. Petit, P. Rouchon, “Motion planning and nonlinear simulations for a tank containing a fluid”, in the proceedings of the 5th European Control Conference, Karlsruhe (Germany), 1999. 
  27. D. Eisenbud, Commutative Algebra with a View Toward Algebraic Geometry, Graduate Texts in Mathematics 150, Springer-Verlag, 1994. Zbl0819.13001MR1322960
  28. K. Eriksson, D. Estep, P. Hansbo, C. Johnson, Computational Differential Equations, Cambridge University Press, 1996. Zbl0946.65049MR1414897
  29. A. Fabiańska, A. Quadrat, “Applications of the Quillen-Suslin theorem in multidimensional systems theory”, in the book Gröbner Bases in Control Theory and Signal Processing, H. Park and G. Regensburger (Eds.), Radon Series on Computation and Applied Mathematics 3, de Gruyter publisher, 2007, 23-106, QuillenSuslin project: http://wwwb.math.rwth-aachen.de/QuillenSuslin/. Zbl1197.13011MR2402709
  30. N. Fitchas, A. Galligo, “Nullstellensatz effectif et conjecture de Serre (Théorème de Quillen-Suslin) pour le calcul formel”, Math. Nachr., 149 (1990), 231-253. Zbl0729.14001MR1124807
  31. M. Fliess, “Some basic structural properties of generalized linear systems”, Systems & Control Letters, 15 (1990), 391-396. Zbl0727.93024MR1084580
  32. M. Fliess, J. Lévine, P. Martin, P. Rouchon, “Flatness and defect of nonlinear systems: introductory theory and examples”, Int. J. Control, 61 (1995), 1327-1361. Zbl0838.93022MR1613557
  33. S. Fröhler, U. Oberst, “Continuous time-varying linear systems”, Systems and Control Letters, 35 (1998), 97-110. Zbl0909.93041MR1654885
  34. A. Galligo, “Some algorithmic equations on ideals of differential operators”, in EUROCAL’85, vol. 2 (Linz 1985), Lecture Notes in Computer Science 204, Springer, 413-412. Zbl0634.16001MR826576
  35. E. Goursat, “Sur une généralisation du problème de Monge”, Ann. Fac. Sciences de Toulouse, 22 (1930), 249-295. Zbl56.0410.02MR1508412
  36. E. Goursat, “Sur quelques équations de Monge intégrables explicitement”, Annali della Scuola Normale di Pisa, Classe di Scienze 2e série, 1 (1932), 35-59. Zbl0003.20804MR1556668
  37. E. Goursat, “Sur une équation de Monge à deux variables indépendantes”, Annali della Scuola Normale di Pisa, Classe di Scienze 2e série, 4 (1935), 15-33. Zbl0010.35501MR1556740
  38. J. Hadamard, “Sur l’équilibre des plaques élastiques circulaires libres ou appuyées et celui de la sphère isotrope”, Annales Scientifiques de l’Ecole Normale Supérieure, 18 (1901), 313-324. Zbl32.0804.02
  39. A. Hillebrand, W. Schmale, “Towards an effective version of a theorem of Stafford”, J. Symbolic Comput., 32 (2001), 699-716. Zbl1015.16030MR1866712
  40. M. Janet, Leçons sur les systèmes d’équations aux dérivées partielles, Cahiers scientifiques IV, Gauthier-Villars, 1929. Zbl55.0276.01
  41. J. Johnson, “Systems of n partial differential equations in n unknowns functions: the conjecture of M. Janet”, Trans. Amer. Math. Soc. 242 (1978), 329-334. Zbl0405.12022MR491637
  42. T. Kailath, Linear Systems, Prentice-Hall, 1980. Zbl0454.93001MR569473
  43. R. E. Kalman, P. L. Falb, M. A. Arbib, Topics in Mathematical System Theory, McGraw-Hill, 1969. Zbl0231.49001MR255260
  44. M. Kashiwara, Algebraic Study of Systems of Partial Differential Equations, Master Thesis, Tokyo Univ. 1970, Mémoires de la Société Mathématiques de France 63 (1995) (English translation). Zbl0877.35003MR1384226
  45. M. Kashiwara, T. Kawai, T. Kimura, Foundations of algebraic analysis, Princeton Mathematical Series, vol. 37, Princeton University Press, Princeton, 1986. Zbl0605.35001MR855641
  46. E. R. Kolchin, Differential Algebra and Algebraic Groups, Academic Press, 1973. Zbl0264.12102MR568864
  47. V. Kolmanovskii, V. Nosov, Stability of Functional Differential Equations. Academic Press, 1986. Zbl0593.34070MR860947
  48. H. Komatsu, “Relative cohomology of sheaves of solutions of differential equations”, in Hyperfunctions and Pseudo-Differential Equations, Lectures Notes in Mathematics 287, Springer, 1971, 192-263. Zbl0278.58010MR393874
  49. V. Kucera, Discrete Linear Control: The Polynomial Equation Approach, Wiley, Chichester 1979. Zbl0432.93001MR573447
  50. L. Landau, L. Lifschitz, Physique théorique, Tome 1: Mécanique, 4th edition, MIR. 
  51. L. Landau, L. Lifschitz, Physique théorique, Tome 2: Théorie des champs, 4th edition, MIR, 1989. Zbl0146.23803MR1020299
  52. L. Landau, L. Lifschitz, Physique théorique, Tome 6: Mécanique des fluides, 2nd edition, MIR, 1989. 
  53. L. Landau, L. Lifschitz, Physique théorique, Tome 7: Elasticité, 2nd edition, MIR, 1990, second edition. MR1085484
  54. T. Y. Lam, Lectures on Modules and Rings, Graduate Texts in Mathematics, 189, Springer, 1999. Zbl0911.16001MR1653294
  55. T. Y. Lam, Serre’s Problem on Projective Modules, Springer Monograph in Mathematics, Springer Verlag, 2006. Zbl1101.13001MR2235330
  56. P. Lax, “Integrals of nonlinear equations of evolution and solitary waves”, Comm. Pure Appl. Math., 21 (1968), 467-490. Zbl0162.41103MR235310
  57. A. Leykin, “Algorithmic proofs of two theorems of Stafford”, J. Symbolic Comput., 38 (2004), 1535-1550. Zbl1130.16304MR2169367
  58. V. Levandovskyy, Non-commutative Computer Algebra for Polynomial Algebras: Gröbner Bases, Applications and Implementation, PhD Thesis, University of Kaiserslautern, 2005. 
  59. V. Levandovskyy, E. Zerz, “Obstructions to genericity in the study of parametric problems in control theory”, in Gröbner Bases in Control Theory and Signal Processing, H. Park and G. Regensburger (Eds.), Radon Series on Computation and Applied Mathematics, 3, de Gruyter publisher, 2007, 127-149, Singular project: http://www.singular.uni-kl.de/. Zbl1202.13015MR2402711
  60. Z. Lin, N. K. Bose, “A generalization of Serre’s conjecture and related issues”, Linear Algebra and Its Applications, 338 (2001), 125-138. Zbl1017.13006MR1861117
  61. A. Logar, B. Sturmfels, “Algorithms for the Quillen-Suslin theorem”, Journal of Algebra, 145 (1992), 231-239. Zbl0747.13020MR1144671
  62. H. Lombardi, I. Yengui, “Suslin’s algorithms for reduction of unimodular rows”, Journal of Symbolic Computation, 39 (2005), 707-717. Zbl1120.13034MR2168615
  63. H. Lombardi, “Dimenion de Krull explicite. Applications aux théorèmes de Kronecker, Bass, Serre et Forster”, Notes de cours, 14/07/05. http://hlombardi.free.fr/publis/publis.html. 
  64. H. Lombardi, C. Quitté, Algèbre Commutative, Méthodes constructives (Modules projectifs de type fini), book, to appear http://hlombardi.free.fr/publis/publis.html. 
  65. S. MacLane, Homology, Springer Verlag, 1995. Zbl0133.26502MR1344215
  66. P. Maisonobe, C. Sabbah, 𝒟 -modules cohérents and holonomes, Hermann, 1993. MR1603676
  67. B. Malgrange, “Systèmes à coefficients constants”, Séminaire Bourbaki 1962/63, 1-11. Zbl0141.27304
  68. B. Malgrange, “Ouverts concaves et théorèmes de dualité pour les systèmes différentiels à coefficients constants”, Comm. Math. Helv., 46 (1971), 487-499. Zbl0229.35015MR304381
  69. B. Malgrange, “Lettre à P. Rouchon”, 26/01/00, private communication with A. Quadrat, 14/02/00. 
  70. F. Malrait, P. Martin, P. Rouchon, “Dynamic feedback transformations of controllable linear time-varying systems”, in Lecture Notes in Control and Inform. Sci. 259, Springer, 2001, 55-62. Zbl1056.93513MR1806163
  71. J. C. McConnell, J. C. Robson, Noncommutative Noetherian Rings, American Mathematical Society, 2000. Zbl0980.16019MR1811901
  72. G. Monge, “Où l’on fait voir que les équations aux différences ordinaires, pour lesquelles les conditions d’intégrabilité ne sont pas satisfaites, sont suscesptibles d’une véritable intégration, et que c’est de cette intégration que dépend celle des équations aux différences partielles élevées”, Mémoire de l’Académie Royale des Sciences, Paris, 1784, 502-576. 
  73. H. Mounier, Propriétés structurelles des systèmes linéaires à retards: aspects théoriques et pratiques, PhD thesis, University of Paris XI, 1995. 
  74. H. Mounier, J. Rudolph, M. Petitot, M. Fliess, “A flexible rod as a linear delay system”, in Proceedings of 3rd European Control Conference, Rome (Italy), 1995, 3676-3681. 
  75. H. Mounier, P. Rouchon, J. Rudolph, “Some examples of linear systems with delays”, European Journal of Automation, 31 (1997), 911-925. 
  76. H. Mounier, J. Rudolph, M. Fliess, P. Rouchon, “Tracking control of a vibrating string with an interior mass viewed as delay system”, ESAIM COCV, 3 (1998), 315-321. Zbl0906.73046MR1644431
  77. T. Oaku, N. Takayama, “Algorithms for D -modules-restriction, tensor product, localization, and local cohomology groups”, J. Pure Appl. Algebra, 156 (2001), 267-308. Zbl0983.13008MR1808827
  78. U. Oberst, “Multidimensional constant linear systems”, Acta Appl. Math., 20 (1990), 1-175. Zbl0715.93014MR1078671
  79. N. Petit, P. Rouchon, “Dynamics and solutions to some control problems for water-tank systems”, IEEE Trans. Automat. Control, 47 (2002), 595-609. MR1893517
  80. H. K. Pillai, S. Shankar, “A behavioural approach to control of distributed systems”, SIAM Journal on Control and Optimization, 37 (1999), 388-408. Zbl0919.93020MR1655859
  81. J. W. Polderman, J. C. Willems, Introduction to Mathematical Systems Theory. A Behavioral Approach, TAM 26, Springer, 1998. Zbl0940.93002MR1480665
  82. J.-F. Pommaret, Systems of Partial Differential Equations and Lie Pseudogroups, Gordon and Breach, 1978. Zbl0401.58006MR517402
  83. J.-F. Pommaret, Differential Galois Theory, Gordon and Breach, 1983. Zbl0539.12013MR720863
  84. J.-F. Pommaret, Partial Differential Equations and Group Theory: New Perspectives for Applications, Kluwer, 1994. Zbl0808.35002MR1308976
  85. J.-F. Pommaret, Partial Differential Control Theory, Kluwer Academic Publishers, Mathematics and Its Applications, 2001. Zbl1079.93001MR1853969
  86. J.-F. Pommaret, “Algebraic analysis of control systems defined by partial differential equations”, in the book Advanced Topics in Control Systems Theory, F. Lamnabhi-Lagarrigue, A. Loria, E. Panteley (Eds), Lecture Notes in Control and Information Sciences (LNCIS) 311, Springer, 2005, 155-223. Zbl1167.93328MR2130106
  87. J.-F. Pommaret, A. Quadrat, “Generalized Bézout identity”, Appl. Algebra Engrg. Comm. Comput., 9 (1998), 91-116. Zbl1073.93516MR1636916
  88. J.-F. Pommaret, A. Quadrat, “Localization and parametrization of linear multidimensional control systems”, Systems & Control Letters, 37 (1999), 247-260. Zbl0948.93016MR1751255
  89. J.-F. Pommaret, A. Quadrat, “Algebraic analysis of linear multidimensional control systems”, IMA J. Math. Control Inform., 16 (1999), 275-297. Zbl1158.93319MR1706658
  90. J.-F. Pommaret, A. Quadrat, “Formal elimination for multidimensional systems and applications to control theory”, Math. Control, Signal and Systems, 13 (2000), 193-215. Zbl1120.93312MR1784263
  91. J.-F. Pommaret, A. Quadrat, “Equivalences of linear control systems”, Proceedings of MTNS 2000, Perpignan (France). Zbl1158.93319MR1803511
  92. J.-F. Pommaret, A. Quadrat, “A functorial approach to the behaviour of multidimensional control systems”, Int. J. Appl. Math. Comput. Sci., 13 (2003), 7-13. Zbl1040.93510MR1986488
  93. J.-F. Pommaret, A. Quadrat, “A differential operator approach to multidimensional optimal control”, Int. J. Control, 77 (2004), 821-836. Zbl1136.93359MR2082176
  94. M. van der Put, M. F. Singer, Galois Theory of Linear Differential Equations, Grundlehren der mathematischen Wissenschaften, 328, Springer, 2003. Zbl1036.12008MR1960772
  95. A. Quadrat, “Extended Bézout identities”, Proceedings of European Control Conference, Porto (Portugal), (04-07/09/01). 
  96. A. Quadrat, “The fractional representation approach to synthesis problems: an algebraic analysis viewpoint. Part I: (Weakly) doubly coprime factorizations”, SIAM J. Control Optim., 42 (2003), 266-299. Zbl1035.93017MR1982745
  97. A. Quadrat, “Purity filtration of general linear systems of partial differential equations”, submitted for publication, INRIA report, 2010. 
  98. A. Quadrat, “Purity filtration of n -dimensional linear systems”, to appear in the proceedings of MTNS 2010, Budapest (Hungary) (05-07/07/10). 
  99. A. Quadrat, “Extendability of multidimensional linear systems”, to appear in the Proceedings of MTNS 2010, Budapest (Hungary) (05-07/07/10). 
  100. A. Quadrat, “Systems and Structures: An algebraic analysis approach to mathematical systems theory”, book in preparation, 2010. 
  101. A. Quadrat, D. Robertz, “Parametrizing all solutions of uncontrollable multidimensional linear systems”, Proceedings of 16th IFAC World Congress, Prague (Czech Republic), (04-08/07/05). 
  102. A. Quadrat, D. Robertz, “On the Monge problem and multidimensional optimal control”, Proceedings of MTNS 2006, Kyoto (Japan), (20-24/07/06). 
  103. A. Quadrat, D. Robertz, “Computation of bases of free modules over the Weyl algebras”, J. Symbolic Comput., 42 (2007), 1113-1141, Stafford project (http://wwwb.math.rwth-aachen.de/OreModules). Zbl1137.16002MR2368075
  104. A. Quadrat, D. Robertz, “On the Baer extension problem for multidimensional linear systems”, INRIA report 6307, 2007, http://hal.inria.fr/inria-00175272, submitted for publication. Zbl1137.16002
  105. A. Quadrat, D. Robertz, “Baer’s extension problem for multidimensional linear systems”, Proceedings of MTNS 2008, Virginia (USA), (28/07-01/08/08). Zbl1215.93020
  106. A. Quadrat, D. Robertz, “Controllability and differential flatness of linear analytic ordinary differential systems”, to appear in the Proceedings of MTNS 2010, Budapest (Hungary) (05-07/07/10). 
  107. D. Quillen, “Projective modules over polynomial rings”, Invent. Math., 36 (1976), 167-171. Zbl0337.13011MR427303
  108. J. F. Ritt, Differential Algebra, Dover, 1996. Zbl0141.03801MR201431
  109. D. Robertz, “Janet bases and applications”, in the book Groebner Bases in Symbolic Analysis, M. Rosenkranz, D. Wang, D. (eds.), Radon Series on Computation and Applied Mathematics 2, de Gruyter publisher, 2007, 139-168, JanetOre project: http://wwwb.math.rwth-aachen.de/~daniel/index.html. Zbl1130.13019MR2394772
  110. J. J. Rotman, An Introduction to Homological Algebra, Springer, 2nd edition, 2009. Zbl1157.18001MR2455920
  111. J. T. Stafford, “Module structure of Weyl algebras”, J. London Math. Soc., 18 (1978), 429-442. Zbl0394.16001MR518227
  112. J.-P. Serre, “Faisceaux algébriques cohérents”, Annals of Mathematics, 61 (1955), 197-278. Zbl0067.16201MR68874
  113. J.-P. Serre, “Sur les modules projectifs”, Séminaire Dubreil-Pisot, vol. 2, 1960/1961, in Oeuvres, Collected Papers, Vol. II 1960-1971, Springer, 1986, 23-34. Zbl0132.41301
  114. M. F. Singer, “Testing reducibility of linear differential operators: a group theoretic perspective”, Appl. Algebra Engrg. Comm. Comput., 7 (1996), 77-104. Zbl0999.12007MR1462491
  115. A. Suslin, “The projective modules are free over polynomial rings”, Dklady-Soviet Math., 229 (1976), 1063-1066. Zbl0354.13010MR469905
  116. H. Tsai, U. Walther, “Computing homomorphisms between holonomic D -modules”, J. Symbolic Comput. 32 (2001), 597-617. Zbl1010.16023MR1866706
  117. K. Washizu, Variational Methods in Elasticity & Plasticity, Pergammon Press, 3rd, 1982. Zbl0498.73014MR391680
  118. J. Wood, “Modules and behaviours in n D systems theory”, Multidimensional Systems and Signal Processing, 11 (2000), 11-48. Zbl0963.93015MR1775208
  119. N. Yoneda, “On Ext and exact sequences”, J. Fac. Sci. Univ. Tokyo Sect. I, 8 (1960), 507-576. Zbl0163.26902MR225854
  120. P. Zervos, Le problème de Monge, Mémorial des sciences mathématiques, fascicule LIII, Gauthier-Villars, 1932. Zbl0004.00805
  121. E. Zerz, Topics in Multidimensional Linear Systems Theory, Lecture Notes in Control and Information Sciences 256, Springer, 2000. Zbl1002.93002MR1781175
  122. E. Zerz, “An algebraic analysis approach to linear time-varying systems”, IMA J. Math. Control Inform., 23 (2006), 113-126. Zbl1106.93019MR2212264

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.