A functorial approach to the behaviour of multidimensional control systems

Jean-François Pommaret; Alban Quadrat

International Journal of Applied Mathematics and Computer Science (2003)

  • Volume: 13, Issue: 1, page 7-13
  • ISSN: 1641-876X

Abstract

top
We show how to use the extension and torsion functors in order to compute the torsion submodule of a differential module associated with a multidimensional control system. In particular, we show that the concept of the weak primeness of matrices corresponds to the torsion-freeness of a certain module.

How to cite

top

Pommaret, Jean-François, and Quadrat, Alban. "A functorial approach to the behaviour of multidimensional control systems." International Journal of Applied Mathematics and Computer Science 13.1 (2003): 7-13. <http://eudml.org/doc/207626>.

@article{Pommaret2003,
abstract = {We show how to use the extension and torsion functors in order to compute the torsion submodule of a differential module associated with a multidimensional control system. In particular, we show that the concept of the weak primeness of matrices corresponds to the torsion-freeness of a certain module.},
author = {Pommaret, Jean-François, Quadrat, Alban},
journal = {International Journal of Applied Mathematics and Computer Science},
keywords = {weak primeness; algebraic analysis; multidimensional systems; rings of differential operators; torsion and extension functors; controllability; behavioural framework; linear multidimensional system; implicit form; torsion submodule; weak primeness property},
language = {eng},
number = {1},
pages = {7-13},
title = {A functorial approach to the behaviour of multidimensional control systems},
url = {http://eudml.org/doc/207626},
volume = {13},
year = {2003},
}

TY - JOUR
AU - Pommaret, Jean-François
AU - Quadrat, Alban
TI - A functorial approach to the behaviour of multidimensional control systems
JO - International Journal of Applied Mathematics and Computer Science
PY - 2003
VL - 13
IS - 1
SP - 7
EP - 13
AB - We show how to use the extension and torsion functors in order to compute the torsion submodule of a differential module associated with a multidimensional control system. In particular, we show that the concept of the weak primeness of matrices corresponds to the torsion-freeness of a certain module.
LA - eng
KW - weak primeness; algebraic analysis; multidimensional systems; rings of differential operators; torsion and extension functors; controllability; behavioural framework; linear multidimensional system; implicit form; torsion submodule; weak primeness property
UR - http://eudml.org/doc/207626
ER -

References

top
  1. Fornasini E. and Valcher M.E. (1997): nD polynomial matrices with applications to multidimensional signal analysis. - Multidim. Syst. Signal Process., Vol. 8, No. 4, pp. 387-408. Zbl0882.93038
  2. Kashiwara M. (1970): Algebraic Study of Systems of Partial Differential Equations. - Memoires de la Societe Mathematiques de France, No. 63 (1995). 
  3. Malgrange B. (1966): Ideals of Differential Functions. - Oxford: Oxford University Press. Zbl0177.17902
  4. Oberst U. (1990): Multidimensional constant linear systems. - Acta Appl. Math., Vol. 20, pp. 1-175. Zbl0715.93014
  5. Pillai H.K. and Shankar S. (1999): A behavioural approach to control of distributed systems. - SIAM J. Contr. Optim., Vol. 37, No. 2, pp. 388-408. Zbl0919.93020
  6. Pommaret J.F. (2001): Partial Differential Control Theory. -Dordrecht: Kluwer. 
  7. Pommaret J.F. and Quadrat A. (1999a): Localization and parametrization of linear multidimensional control systems. -Syst. Contr. Lett., Vol. 37, pp. 247-260. Zbl0948.93016
  8. Pommaret J.F. and Quadrat A. (1999b): Algebraic analysis of linear multidimensional control systems. - IMA J. Contr.Optim., Vol. 16, pp. 275-297. Zbl1158.93319
  9. Pommaret J.F. and Quadrat A. (2000): Equivalences of linear control systems. - Proc. Int. Symp. Mathematical Theory of Networks and Systems, MTNS 2000, Perpignan, France, (on CD-ROM). Zbl0971.93017
  10. Quadrat A. (1999): Analyse algebrique des systèmes decontrôle lineaires multidimensionnels. - Ph. D. Thesis, Ecole des Ponts et Chaussees, Marne-La-Vallee, France. 
  11. Quadrat A. (2003): The fractional representation approach to synthesis problems: An algebraic analysis viewpoint, I. (weakly) doubly coprime factorizations, II. internal stabilization. - SIAM J. Contr. Optim., (to appear). Zbl1035.93017
  12. Rotman J.J. (1979). An Introduction to Homological Algebra. - New York: Academic Press. Zbl0441.18018
  13. Shankar S. (2001): The lattice structure of behaviours. -SIAM J. Contr. Optim., Vol. 39, No. 6, pp. 1817-1832. Zbl0983.93025
  14. Smith M.C. (1989): On stabilization and the existence of coprime factorizations. - IEEE Trans. Automat. Contr., Vol. 34, No. 9, pp. 1005-1007. Zbl0693.93057
  15. Willems J.C. (1991): Paradigms and puzzles in the theory of dynamical systems. - IEEE Trans. Automat. Contr., Vol. 36, No. 3, pp. 259-294. Zbl0737.93004
  16. Wood J., Rogers E. and Owens D.H. (1998): A formal theory of matrix primeness. - Math. Contr. Signals Syst., Vol. 11, No. 1, pp. 40-78. Zbl0898.93008
  17. Wood J. (2000): Modules and behaviours in nD systems theory. - Multidim. Syst. Signal Process., Vol. 11, pp. 11-48. Zbl0963.93015

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.