Traveling waves for nonlinear Schrödinger equations with nonzero conditions at infinity: some results and open problems

Mihai Mariş[1]

  • [1] Institut de Mathématiques de Toulouse UMR 5219, Université Paul Sabatier - Toulouse 3, 118, Route de Narbonne, 31062 Toulouse cedex, France

Journées Équations aux dérivées partielles (2010)

  • page 1-22
  • ISSN: 0752-0360

Abstract

top
This text is a survey of recent results on traveling waves for nonlinear Schrödinger equations with nonzero conditions at infinity. We present the existence, nonexistence and stability results and we describe the main ideas used in proofs.

How to cite

top

Mariş, Mihai. "Traveling waves for nonlinear Schrödinger equations with nonzero conditions at infinity: some results and open problems." Journées Équations aux dérivées partielles (2010): 1-22. <http://eudml.org/doc/116380>.

@article{Mariş2010,
abstract = {This text is a survey of recent results on traveling waves for nonlinear Schrödinger equations with nonzero conditions at infinity. We present the existence, nonexistence and stability results and we describe the main ideas used in proofs.},
affiliation = {Institut de Mathématiques de Toulouse UMR 5219, Université Paul Sabatier - Toulouse 3, 118, Route de Narbonne, 31062 Toulouse cedex, France},
author = {Mariş, Mihai},
journal = {Journées Équations aux dérivées partielles},
language = {eng},
month = {6},
pages = {1-22},
publisher = {Groupement de recherche 2434 du CNRS},
title = {Traveling waves for nonlinear Schrödinger equations with nonzero conditions at infinity: some results and open problems},
url = {http://eudml.org/doc/116380},
year = {2010},
}

TY - JOUR
AU - Mariş, Mihai
TI - Traveling waves for nonlinear Schrödinger equations with nonzero conditions at infinity: some results and open problems
JO - Journées Équations aux dérivées partielles
DA - 2010/6//
PB - Groupement de recherche 2434 du CNRS
SP - 1
EP - 22
AB - This text is a survey of recent results on traveling waves for nonlinear Schrödinger equations with nonzero conditions at infinity. We present the existence, nonexistence and stability results and we describe the main ideas used in proofs.
LA - eng
UR - http://eudml.org/doc/116380
ER -

References

top
  1. I. V. Barashenkov, V. G. Makhankov, Soliton-like “bubbles” in a system of interacting bosons, Phys. Lett. A 128 (1988), pp. 52-56. MR935918
  2. I. V. Barashenkov, A. D. Gocheva, V. G. Makhankov, I. V. Puzynin, Stability of soliton-like bubbles, Physica D 34 (1989), pp. 240-254. Zbl0697.35127MR982390
  3. N. Berloff, Quantised vortices, travelling coherent structures and superfluid turbulence, in Stationary and time dependent Gross-Pitaevskii equations, A. Farina and J.-C. Saut eds., Contemp. Math. Vol. 473, AMS, Providence, RI, 2008, pp. 26-54. Zbl1166.35360MR2522013
  4. F. Béthuel, P. Gravejat, J.-C. Saut, Travelling-waves for the Gross-Pitaevskii equation II, Comm. Math. Phys. 285, No. 2 (2009), pp. 567-651. Zbl1190.35196MR2461988
  5. F. Béthuel, P. Gravejat, J.-C. Saut, On the KP I transonic limit of two dimensional Gross-Pitaevskii travelling-waves, Dynamics of PDE 5, No. 3, (2008), pp. 241-280. Zbl1186.35199MR2455894
  6. F. Béthuel, P. Gravejat, J.-C. Saut, D. Smets, On the Korteweg-de Vries long-wave approximation of the Gross-Pitaevskii equation I, Int. Math. Res. Notes (2009), pp. 2700-2748. Zbl1183.35240MR2520771
  7. F. Béthuel, P. Gravejat, J.-C. Saut, D. Smets, Orbital stability of the black soliton to the Gross-Pitaevskii equation, Indiana Univ. Math. J. 57, No. 6 (2008), pp. 2611-2642. Zbl1171.35012MR2482993
  8. F. Béthuel, G. Orlandi, D. Smets, Vortex rings for the Gross-Pitaevskii equation, J. Eur. Math. Soc. (JEMS) 6 (2004), pp. 17-94. Zbl1091.35085MR2041006
  9. F. Béthuel, J.-C. Saut, Travelling-waves for the Gross-Pitaevskii equation I, Ann. Inst. H. Poincaré Phys. Théor. 70 (1999), pp. 147-238. Zbl0933.35177MR1669387
  10. T. Cazenave, P.-L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations, Comm. Math. Phys. 85, no. 4 (1982), pp. 549-561. Zbl0513.35007MR677997
  11. D. Chiron, Travelling-waves for the Gross-Pitaevskii equation in dimension larger than two, Nonlinear Analysis 58 (2004), pp. 175-204. Zbl1054.35091MR2070812
  12. D. Chiron, M. Mariş, Traveling waves for nonlinear Schrödinger equations with nonzero conditions at infinity II, in preparation. Zbl1292.35274
  13. C. Coste, Nonlinear Schrödinger equation and superfluid hydrodynamics, Eur. Phys. J. B 1 (1998), pp. 245-253. MR1646182
  14. A. Farina, Finite-energy solutions, quantization effects and Liouville-type results for a variant of the Ginzburg-Landau systems in k , Diff. Int. Eq. 11, No. 6 (1998), pp. 875-893. Zbl1074.35504MR1659256
  15. A. Farina, From Ginzburg-Landau to Gross-Pitaevskii, Monatsh. Math. 139 (2003), pp. 265-269. Zbl1126.35063MR2001707
  16. C. Gallo, Schrödinger group on Zhidkov spaces, Adv. Differential Equations 9, No. 5-6 (2004), pp. 509-538. Zbl1103.35093MR2099970
  17. C. Gallo, Growth rate of the Schrödinger group on Zhidkov spaces, C. R. Math. Acad. Sci. Paris 342, No. 5 (2006), pp. 319-323. Zbl1094.35115MR2201956
  18. C. Gallo, The Cauchy problem for defocusing nonlinear Schrödinger equations with non-vanishing initial data at infinity, Comm. Partial Differential Equations 33, No. 4-6 (2008), pp. 729-771. Zbl1156.35086MR2424376
  19. P. Gérard, The Cauchy Problem for the Gross-Pitaevskii Equation, Ann. Inst. H. Poincaré Anal. Non Linéaire 23 (5) (2006), pp. 765-779. Zbl1122.35133MR2259616
  20. P. Gérard, The Gross-Pitaevskii equation in the energy space, in Stationary and time-dependent Gross-Pitaevskii equations, A. Farina and J.-C. Saut eds., Contemp. Math. Vol. 473, Amer. Math. Soc., Providence, RI, 2008, pp. 129-148. Zbl1166.35373MR2522016
  21. P. Gérard, Z. Zhang, Orbital stability of traveling waves for the one-dimensional Gross-Pitaevskii equation, J. Math. Pures Appl. (9) 91, No. 2 (2009), pp. 178–210. Zbl1232.35152MR2498754
  22. J. Grant, P.H. Roberts, Motions in a Bose condensate III. The structure and effective masses of charged and uncharged impurities, J. Phys. A: Math., Nucl. Gen., 7 (1974), pp. 260-279. 
  23. P. Gravejat, A non-existence result for supersonic travelling-waves in the Gross-Pitaevskii equation, Comm. Math. Phys. 243, No. 1 (2003), pp. 93-103. Zbl1044.35087MR2020221
  24. P. Gravejat, Decay for travelling waves in the Gross-Pitaevskii equation, Ann. Inst. Henri Poincaré, Analyse non linéeaire 21, No. 5 (2004), pp. 591-637. Zbl1057.35060MR2086751
  25. P. Gravejat, Limit at infinity and non-existence results for sonic travelling waves in the Gross-Pitaevskii equation, Differential and Integral Equations 17, No. 11-12 (2004), pp. 1213-1232. Zbl1150.35301MR2100023
  26. P. Gravejat, Asymptotics for the travelling waves in the Gross-Pitaevskii equation, Asymptot. Anal. 45, No. 3-4 (2005), pp. 227-299. Zbl1092.35103MR2191764
  27. P. Gravejat, First order asymptotics for the travelling waves in the Gross-Pitaevskii equation, Adv. Differential Equations 11, No. 3 (2006), pp. 259-280. Zbl1102.35029MR2221483
  28. E. P. Gross, Hydrodynamics of a superfluid condensate, J. Math. Phys. 4 (2), (1963), pp. 195-207. 
  29. S. Gustafson, K. Nakanishi, T.-P. Tsai, Scattering for the Gross-Pitaevskii equation, Math. Res. Lett. 13, No. 2-3 (2006), pp. 273-285. Zbl1119.35084MR2231117
  30. S. Gustafson, K. Nakanishi, T.-P. Tsai, Global dispersive solutions for the Gross-Pitaevskii equation in two and three dimensions, Ann. Inst. H. Poincaré 8, No. 7 (2007), pp. 1303-1331. Zbl05218113MR2360438
  31. S. Gustafson, K. Nakanishi, T.-P. Tsai, Scattering theory for the Gross-Pitaevskii equation in three dimensions, Commun. Contemp. Math. 11, No. 4 (2009), pp. 657-707. Zbl1180.35481MR2559713
  32. S. V. Iordanskii, A. V. Smirnov, Three-dimensional solitons in He II, JETP Lett. 27 (10) (1978), pp. 535-538. 
  33. C. A. Jones, P. H. Roberts, Motions in a Bose condensate IV, Axisymmetric solitary waves, J. Phys A: Math. Gen. 15 (1982), pp. 2599-2619. 
  34. C. A. Jones, S. J. Putterman, P. H. Roberts, Motions in a Bose condensate V. Stability of wave solutions of nonlinear Schrödinger equations in two and three dimensions, J. Phys A: Math. Gen. 19 (1986), pp. 2991-3011. 
  35. T. Kato, Schrödinger operators with singular potentials, Israel J. Math. 13 (1972), pp. 135-148. Zbl0246.35025MR333833
  36. Y. S. Kivshar, B. Luther-Davies, Dark optical solitons: physics and applications, Phys. Rep. 298 (1998), pp. 81-197. 
  37. Y. S. Kivshar, D. E. Pelinovsky, Y. A. Stepanyants, Self-focusing of plane dark solitons in nonlinear defocusing media, Phys. Rev. E 51 (5) (1995), pp. 5016-5026. MR1383087
  38. E. A. Kuznetsov, J. J. Rasmussen, Instability of two-dimensional solitons and vortices in defocusing media, Phys. Rev. E 51, No. 5 (1995), pp. 4479-4484. 
  39. E. A. Kuznetsov, J. J. Rasmussen, Self-defocusing instability of two-dimensional solitons and vortices, JETP Lett. 62, No. 2 (1995), pp. 105-112. 
  40. E. H. Lieb, On the lowest eigenvalue of the Laplacian for the intersection of two domains, Invent. Math. 74 (1983), pp. 441-448. Zbl0538.35058MR724014
  41. Z. Lin, Stability and instability of traveling solitonic bubbles, Adv. Differential Equations 7 (2002), No. 8, pp. 897-918. Zbl1033.35117MR1895111
  42. P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case, part I, Ann. Inst. H. Poincaré, Anal. non linéaire, 1 (1984), pp. 109-145. Zbl0541.49009MR778970
  43. M. Mariş, Existence of nonstationary bubbles in higher dimensions, Journal des Mathématiques Pures et Appliquées 81 (2002), pp. 1207-1239. Zbl1040.35116MR1952162
  44. M. Mariş, Nonexistence of supersonic traveling waves for nonlinear Schrödinger equations with non-zero conditions at infinity, SIAM Journal on Mathematical Analysis, Vol. 40, No. 3 (2008), pp. 1076-1103. Zbl1167.35518MR2452881
  45. M. Mariş, On the symmetry of minimizers, Archive for Rational Mechanics and Analysis 192, No. 2 (2009), pp. 311-330. Zbl1159.49005MR2486598
  46. M. Mariş, Traveling waves for nonlinear Schrödinger equations with nonzero conditions at infinity, preprint, arXiv: 0903.0354. Zbl1315.35207
  47. M. Mariş, On some minimization problems, in preparation. 
  48. L. M. Pismen, A. A. Nepomnyashchy, Stability of vortex maps in a model of superflow, Physica D 69 (1993), pp. 173-175. Zbl0791.35128MR1245660
  49. L. M. Pismen, J. Rubinstein, Motion of vortex lines in the Ginzburg-Landau model, Physica D 47 (1991), pp. 353-360. Zbl0728.35090MR1098255

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.