Cauchy problem for hyperbolic operators with triple characteristics of variable multiplicity

Enrico Bernardi[1]; Antonio Bove[2]; Vesselin Petkov[3]

  • [1] Dipartimento di Matematica per le Scienze Economiche e Sociali, Università di Bologna, Viale Filopanti 5, 40126 Bologna, Italia
  • [2] Dipartamento di Matematica, Università di Bologna, Piazza di Porta S. Donato 5, 40126 Bologna, Italia
  • [3] Université Bordeaux I, Institut de Mathématiques de Bordeaux, 351, Cours de la Libération, 33405 Talence, France

Journées Équations aux dérivées partielles (2010)

  • Volume: 12, Issue: 3, page 1-13
  • ISSN: 0752-0360

Abstract

top
We study a class of third order hyperbolic operators P in G = Ω { 0 t T } , Ω n + 1 with triple characteristics on t = 0 . We consider the case when the fundamental matrix of the principal symbol for t = 0 has a couple of non vanishing real eigenvalues and P is strictly hyperbolic for t > 0 . We prove that P is strongly hyperbolic, that is the Cauchy problem for P + Q is well posed in G for any lower order terms Q .

How to cite

top

Bernardi, Enrico, Bove, Antonio, and Petkov, Vesselin. "Cauchy problem for hyperbolic operators with triple characteristics of variable multiplicity." Journées Équations aux dérivées partielles 12.3 (2010): 1-13. <http://eudml.org/doc/116385>.

@article{Bernardi2010,
abstract = {We study a class of third order hyperbolic operators $P$ in $G = \Omega \cap \lbrace 0 \le t \le T\rbrace ,\: \Omega \subset \{\mathbb\{R\}\}^\{n+1\}$ with triple characteristics on $t = 0$. We consider the case when the fundamental matrix of the principal symbol for $t = 0$ has a couple of non vanishing real eigenvalues and $P$ is strictly hyperbolic for $t &gt; 0.$ We prove that $P$ is strongly hyperbolic, that is the Cauchy problem for $P + Q$ is well posed in $G$ for any lower order terms $Q$.},
affiliation = {Dipartimento di Matematica per le Scienze Economiche e Sociali, Università di Bologna, Viale Filopanti 5, 40126 Bologna, Italia; Dipartamento di Matematica, Università di Bologna, Piazza di Porta S. Donato 5, 40126 Bologna, Italia; Université Bordeaux I, Institut de Mathématiques de Bordeaux, 351, Cours de la Libération, 33405 Talence, France},
author = {Bernardi, Enrico, Bove, Antonio, Petkov, Vesselin},
journal = {Journées Équations aux dérivées partielles},
keywords = {Cauchy problem; effectively hyperbolic operators; triple characteristics; energy estimates},
language = {eng},
month = {6},
number = {3},
pages = {1-13},
publisher = {Groupement de recherche 2434 du CNRS},
title = {Cauchy problem for hyperbolic operators with triple characteristics of variable multiplicity},
url = {http://eudml.org/doc/116385},
volume = {12},
year = {2010},
}

TY - JOUR
AU - Bernardi, Enrico
AU - Bove, Antonio
AU - Petkov, Vesselin
TI - Cauchy problem for hyperbolic operators with triple characteristics of variable multiplicity
JO - Journées Équations aux dérivées partielles
DA - 2010/6//
PB - Groupement de recherche 2434 du CNRS
VL - 12
IS - 3
SP - 1
EP - 13
AB - We study a class of third order hyperbolic operators $P$ in $G = \Omega \cap \lbrace 0 \le t \le T\rbrace ,\: \Omega \subset {\mathbb{R}}^{n+1}$ with triple characteristics on $t = 0$. We consider the case when the fundamental matrix of the principal symbol for $t = 0$ has a couple of non vanishing real eigenvalues and $P$ is strictly hyperbolic for $t &gt; 0.$ We prove that $P$ is strongly hyperbolic, that is the Cauchy problem for $P + Q$ is well posed in $G$ for any lower order terms $Q$.
LA - eng
KW - Cauchy problem; effectively hyperbolic operators; triple characteristics; energy estimates
UR - http://eudml.org/doc/116385
ER -

References

top
  1. E. Bernardi, A. Bove, V. Petkov, The Cauchy problem for effectively hyperbolic operators with triple characteristics, in preparation. Zbl1284.35256
  2. J. M. Bony, Sur l’inégalité de Fefferman-Phong, Séminaire EDP, Ecole Polytechnique, 1998-1999. MR1721321
  3. J. Chazarain, Opérateurs hyperboliques à caractéristiques de multiplicité constante, Ann. Institut Fourier (Grenoble), 24 (1974), 173-202. Zbl0274.35045MR390512
  4. H. Flashka and G. Strang, The correctness of the Cauchy problem, Adv. in Math. 6 (1971), 347-379. Zbl0213.37304MR279425
  5. L. Hörmander, Cauchy problem for differential operators with double characteristics, J. Analyse Math. 32 (1977), 118-196. Zbl0367.35054MR492751
  6. L. Hörmander, Analysis of Linear Partial Differential Operators, III, Springer-Verlag, 1985, Berlin. Zbl0601.35001MR781536
  7. V. Ja. Ivrii and V. M. Petkov, Necessary conditions for the Cauchy problem for non-strictly hyperboilic equations to be well posed, Uspehi Mat. Nauk, 29: 5 (1974), 1-70 (in Russian), English translation: Russian Math. Surveys, 29:5 (1974), 3-70. Zbl0312.35049MR427843
  8. V. Ivrii, Sufficient conditions for regular and completely regular hyperbolicity, Trudy Moskov Mat. Obsc.,33 (1976), 3-66 (in Russian), English translation: Trans. Moscow Math. Soc. 1 (1978), 165. Zbl0376.35038MR492904
  9. N. Iwasaki, The Cauchy problem for effectively hyperbolic equations (a standard type), Publ. RIMS Kyoto Univ. 20 (1984), 551-592. MR759681
  10. N. Iwasaki, The Cauchy problem for effectively hyperbolic equations (general case), J. Math. Kyoto Univ. 25 (1985), 727-743. Zbl0613.35046MR810976
  11. R. Melrose, The Cauchy problem for effectively hyperbolic operators, Hokkaido Math. J. 12 (1983), 371-391. Zbl0544.35094MR725587
  12. T. Nishitani, Local energy integrals for effectively hyperbolic operators, I, II, J. Math. Kyoto Univ. 24 (1984), 623-658 and 659-666. Zbl0589.35078MR775976
  13. T. Nishitani, The effectively Cauchy problem in The Hyperbolic Cauchy Problem, Lecture Notes in Mathematics, 1505, Springer-Verlag, 1991, pp. 71-167. MR1166190
  14. O. A. Oleinik, On the Cauchy problem for weakly hyperbolic equations, Comm. Pure Appl. Math. 23 (1970), 569-586. MR264227
  15. M. R. Spiegel, J. Liu, Mathematical handbook of formulas and tables, McGraw-Hill, Second Edition, 1999. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.