Cauchy problem for hyperbolic operators with triple characteristics of variable multiplicity
Enrico Bernardi[1]; Antonio Bove[2]; Vesselin Petkov[3]
- [1] Dipartimento di Matematica per le Scienze Economiche e Sociali, Università di Bologna, Viale Filopanti 5, 40126 Bologna, Italia
- [2] Dipartamento di Matematica, Università di Bologna, Piazza di Porta S. Donato 5, 40126 Bologna, Italia
- [3] Université Bordeaux I, Institut de Mathématiques de Bordeaux, 351, Cours de la Libération, 33405 Talence, France
Journées Équations aux dérivées partielles (2010)
- Volume: 12, Issue: 3, page 1-13
- ISSN: 0752-0360
Access Full Article
topAbstract
topHow to cite
topBernardi, Enrico, Bove, Antonio, and Petkov, Vesselin. "Cauchy problem for hyperbolic operators with triple characteristics of variable multiplicity." Journées Équations aux dérivées partielles 12.3 (2010): 1-13. <http://eudml.org/doc/116385>.
@article{Bernardi2010,
abstract = {We study a class of third order hyperbolic operators $P$ in $G = \Omega \cap \lbrace 0 \le t \le T\rbrace ,\: \Omega \subset \{\mathbb\{R\}\}^\{n+1\}$ with triple characteristics on $t = 0$. We consider the case when the fundamental matrix of the principal symbol for $t = 0$ has a couple of non vanishing real eigenvalues and $P$ is strictly hyperbolic for $t > 0.$ We prove that $P$ is strongly hyperbolic, that is the Cauchy problem for $P + Q$ is well posed in $G$ for any lower order terms $Q$.},
affiliation = {Dipartimento di Matematica per le Scienze Economiche e Sociali, Università di Bologna, Viale Filopanti 5, 40126 Bologna, Italia; Dipartamento di Matematica, Università di Bologna, Piazza di Porta S. Donato 5, 40126 Bologna, Italia; Université Bordeaux I, Institut de Mathématiques de Bordeaux, 351, Cours de la Libération, 33405 Talence, France},
author = {Bernardi, Enrico, Bove, Antonio, Petkov, Vesselin},
journal = {Journées Équations aux dérivées partielles},
keywords = {Cauchy problem; effectively hyperbolic operators; triple characteristics; energy estimates},
language = {eng},
month = {6},
number = {3},
pages = {1-13},
publisher = {Groupement de recherche 2434 du CNRS},
title = {Cauchy problem for hyperbolic operators with triple characteristics of variable multiplicity},
url = {http://eudml.org/doc/116385},
volume = {12},
year = {2010},
}
TY - JOUR
AU - Bernardi, Enrico
AU - Bove, Antonio
AU - Petkov, Vesselin
TI - Cauchy problem for hyperbolic operators with triple characteristics of variable multiplicity
JO - Journées Équations aux dérivées partielles
DA - 2010/6//
PB - Groupement de recherche 2434 du CNRS
VL - 12
IS - 3
SP - 1
EP - 13
AB - We study a class of third order hyperbolic operators $P$ in $G = \Omega \cap \lbrace 0 \le t \le T\rbrace ,\: \Omega \subset {\mathbb{R}}^{n+1}$ with triple characteristics on $t = 0$. We consider the case when the fundamental matrix of the principal symbol for $t = 0$ has a couple of non vanishing real eigenvalues and $P$ is strictly hyperbolic for $t > 0.$ We prove that $P$ is strongly hyperbolic, that is the Cauchy problem for $P + Q$ is well posed in $G$ for any lower order terms $Q$.
LA - eng
KW - Cauchy problem; effectively hyperbolic operators; triple characteristics; energy estimates
UR - http://eudml.org/doc/116385
ER -
References
top- E. Bernardi, A. Bove, V. Petkov, The Cauchy problem for effectively hyperbolic operators with triple characteristics, in preparation. Zbl1284.35256
- J. M. Bony, Sur l’inégalité de Fefferman-Phong, Séminaire EDP, Ecole Polytechnique, 1998-1999. MR1721321
- J. Chazarain, Opérateurs hyperboliques à caractéristiques de multiplicité constante, Ann. Institut Fourier (Grenoble), 24 (1974), 173-202. Zbl0274.35045MR390512
- H. Flashka and G. Strang, The correctness of the Cauchy problem, Adv. in Math. 6 (1971), 347-379. Zbl0213.37304MR279425
- L. Hörmander, Cauchy problem for differential operators with double characteristics, J. Analyse Math. 32 (1977), 118-196. Zbl0367.35054MR492751
- L. Hörmander, Analysis of Linear Partial Differential Operators, III, Springer-Verlag, 1985, Berlin. Zbl0601.35001MR781536
- V. Ja. Ivrii and V. M. Petkov, Necessary conditions for the Cauchy problem for non-strictly hyperboilic equations to be well posed, Uspehi Mat. Nauk, 29: 5 (1974), 1-70 (in Russian), English translation: Russian Math. Surveys, 29:5 (1974), 3-70. Zbl0312.35049MR427843
- V. Ivrii, Sufficient conditions for regular and completely regular hyperbolicity, Trudy Moskov Mat. Obsc.,33 (1976), 3-66 (in Russian), English translation: Trans. Moscow Math. Soc. 1 (1978), 165. Zbl0376.35038MR492904
- N. Iwasaki, The Cauchy problem for effectively hyperbolic equations (a standard type), Publ. RIMS Kyoto Univ. 20 (1984), 551-592. MR759681
- N. Iwasaki, The Cauchy problem for effectively hyperbolic equations (general case), J. Math. Kyoto Univ. 25 (1985), 727-743. Zbl0613.35046MR810976
- R. Melrose, The Cauchy problem for effectively hyperbolic operators, Hokkaido Math. J. 12 (1983), 371-391. Zbl0544.35094MR725587
- T. Nishitani, Local energy integrals for effectively hyperbolic operators, I, II, J. Math. Kyoto Univ. 24 (1984), 623-658 and 659-666. Zbl0589.35078MR775976
- T. Nishitani, The effectively Cauchy problem in The Hyperbolic Cauchy Problem, Lecture Notes in Mathematics, 1505, Springer-Verlag, 1991, pp. 71-167. MR1166190
- O. A. Oleinik, On the Cauchy problem for weakly hyperbolic equations, Comm. Pure Appl. Math. 23 (1970), 569-586. MR264227
- M. R. Spiegel, J. Liu, Mathematical handbook of formulas and tables, McGraw-Hill, Second Edition, 1999.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.