# Elliptic curves with $\mathbb{Q}\left(\mathcal{E}\left[3\right]\right)=\mathbb{Q}\left({\zeta}_{3}\right)$ and counterexamples to local-global divisibility by 9

Laura Paladino^{[1]}

- [1] Dipartimento di Matematica Università di Pisa Largo Bruno Pontecorvo, 5 56126 Pisa, Italy

Journal de Théorie des Nombres de Bordeaux (2010)

- Volume: 22, Issue: 1, page 139-160
- ISSN: 1246-7405

## Access Full Article

top## Abstract

top## How to cite

topPaladino, Laura. "Elliptic curves with ${\mathbb{Q}}({\mathcal{E}}[3])= {\mathbb{Q}}(\zeta _3)$ and counterexamples to local-global divisibility by 9." Journal de Théorie des Nombres de Bordeaux 22.1 (2010): 139-160. <http://eudml.org/doc/116392>.

@article{Paladino2010,

abstract = {We give a family $\{\mathcal\{F\}\}_\{h,\beta \}$ of elliptic curves, depending on two nonzero rational parameters $\beta $ and $h$, such that the following statement holds: let $\mathcal\{E\}$ be an elliptic curve and let $\{\mathcal\{E\}\}[3]$ be its 3-torsion subgroup. This group verifies $\{\{\mathbb\{Q\}\}\}(\{\mathcal\{E\}\}[3])=\{\{\mathbb\{Q\}\}\}(\zeta _3)$ if and only if $\mathcal\{E\}$ belongs to $\{\mathcal\{F\}\}_\{h,\beta \}$.Furthermore, we consider the problem of the local-global divisibility by 9 for points of elliptic curves. The number 9 is one of the few exceptional powers of primes, for which an answer to the local-global divisibility is unknown in the case of such algebraic groups. In this paper, we give a negative one. We show some curves of the family $\{\mathcal\{F\}\}_\{h,\beta \}$, with points locally divisible by 9 almost everywhere, but not globally, over a number field of degree at most 2 over $\{\mathbb\{Q\}\}(\{\zeta \}_3)$.},

affiliation = {Dipartimento di Matematica Università di Pisa Largo Bruno Pontecorvo, 5 56126 Pisa, Italy},

author = {Paladino, Laura},

journal = {Journal de Théorie des Nombres de Bordeaux},

keywords = {local-global divisibility problem; elliptic curves},

language = {eng},

number = {1},

pages = {139-160},

publisher = {Université Bordeaux 1},

title = {Elliptic curves with $\{\mathbb\{Q\}\}(\{\mathcal\{E\}\}[3])= \{\mathbb\{Q\}\}(\zeta _3)$ and counterexamples to local-global divisibility by 9},

url = {http://eudml.org/doc/116392},

volume = {22},

year = {2010},

}

TY - JOUR

AU - Paladino, Laura

TI - Elliptic curves with ${\mathbb{Q}}({\mathcal{E}}[3])= {\mathbb{Q}}(\zeta _3)$ and counterexamples to local-global divisibility by 9

JO - Journal de Théorie des Nombres de Bordeaux

PY - 2010

PB - Université Bordeaux 1

VL - 22

IS - 1

SP - 139

EP - 160

AB - We give a family ${\mathcal{F}}_{h,\beta }$ of elliptic curves, depending on two nonzero rational parameters $\beta $ and $h$, such that the following statement holds: let $\mathcal{E}$ be an elliptic curve and let ${\mathcal{E}}[3]$ be its 3-torsion subgroup. This group verifies ${{\mathbb{Q}}}({\mathcal{E}}[3])={{\mathbb{Q}}}(\zeta _3)$ if and only if $\mathcal{E}$ belongs to ${\mathcal{F}}_{h,\beta }$.Furthermore, we consider the problem of the local-global divisibility by 9 for points of elliptic curves. The number 9 is one of the few exceptional powers of primes, for which an answer to the local-global divisibility is unknown in the case of such algebraic groups. In this paper, we give a negative one. We show some curves of the family ${\mathcal{F}}_{h,\beta }$, with points locally divisible by 9 almost everywhere, but not globally, over a number field of degree at most 2 over ${\mathbb{Q}}({\zeta }_3)$.

LA - eng

KW - local-global divisibility problem; elliptic curves

UR - http://eudml.org/doc/116392

ER -

## References

top- E. Artin, J. Tate, Class field theory. Benjamin, Reading, MA, 1967. Zbl0176.33504MR223335
- R. Dvornicich, U. Zannier, Local-global divisibility of rational points in some commutative algebraic groups. Bull. Soc. Math. France, 129 (2001), 317–338. Zbl0987.14016MR1881198
- R. Dvornicich, U. Zannier, An analogue for elliptic curves of the Grunwald-Wang example. C. R. Acad. Sci. Paris, Ser. I 338 (2004), 47–50. Zbl1035.14007MR2038083
- R. Dvornicich, U. Zannier, On local-global principle for the divisibility of a rational point by a positive integer. Bull. Lon. Math. Soc., no. 39 (2007), 27–34. Zbl1115.14011MR2303515
- S. Lang, J. TatePrincipal homogeneous spaces over abelian varieties. American J. Math., no. 80 (1958), 659–684. Zbl0097.36203MR106226
- W. Grunwald, Ein allgemeines Existenztheorem für algebraische Zahlkörper. Journ. f.d. reine u. angewandte Math., 169 (1933), 103–107. Zbl0006.25204
- B. Mazur, Rational isogenies of prime degree (with an appendix by D. Goldfeld. Invent Math., 44 (1978), no. 2, 129–162. Zbl0386.14009MR482230
- L. Merel, W. Stein, The field generated by the points of small prime order on an elliptic curve. Math. Res. Notices, no. 20 (2001), 1075–1082. Zbl1027.11041MR1857596
- L. Merel, Sur la nature non-cyclotomique des points d’ordre fini des courbes elliptiques. (French) [On the noncyclotomic nature of finite-order points of elliptic curves] With an appendix by E. Kowalski and P. Michel. Duke Math. J. 110 (2001), no. 1, 81–119. Zbl1020.11041MR1861089
- L. Paladino, Local-global divisibility by 4 in elliptic curves defined over $\mathbb{Q}$. Annali di Matematica Pura e Applicata, DOI 10.1007/s10231-009-0098-5. Zbl1208.11074
- M. Rebolledo, Corps engendré par les points de 13-torsion des courbes elliptiques. Acta Arith., no. 109 (2003), no. 3, 219–230. Zbl1049.11058MR1980258
- J.-P. Serre, Topics in galois Theory. Jones and barlett, Boston, 1992. Zbl0746.12001MR1162313
- G. Shimura, Introduction to the arithmetic theory of automorphic functions. Princeton University Press, 1994. Zbl0872.11023MR1291394
- J. H. Silverman, The arithmatic of elliptic curves. Springer, 1986. Zbl0585.14026
- J. H. Silverman, J. Tate, Rational points on elliptic curves. Springer, 1992. Zbl0752.14034MR1171452
- E. Trost, Zur theorie des Potenzreste. Nieuw Archief voor Wiskunde, no. 18 (2) (1948), 58–61.
- Sh. Wang, A counter example to Grunwald’s theorem. Annals of Math., no. 49 (1948), 1008–1009. Zbl0032.10802MR26992
- Sh. Wang, On Grunwald’s theorem. Annals of Math., no. 51 (1950), 471–484. Zbl0036.15802MR33801
- G. Whaples, Non-analytic class field theory and Grunwald’s theorem . Duke Math. J., no. 9 (1942), 455–473. Zbl0063.08226MR7010
- S. Wong, Power residues on abelian variety. Manuscripta Math., no. 102 (2000), 129–137. Zbl1025.11019MR1771232

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.