# Local-global divisibility of rational points in some commutative algebraic groups

Roberto Dvornicich; Umberto Zannier

Bulletin de la Société Mathématique de France (2001)

- Volume: 129, Issue: 3, page 317-338
- ISSN: 0037-9484

## Access Full Article

top## Abstract

top## How to cite

topDvornicich, Roberto, and Zannier, Umberto. "Local-global divisibility of rational points in some commutative algebraic groups." Bulletin de la Société Mathématique de France 129.3 (2001): 317-338. <http://eudml.org/doc/272481>.

@article{Dvornicich2001,

abstract = {Let $\mathcal \{A\}$ be a commutative algebraic group defined over a number field $k$. We consider the following question:Let $r$ be a positive integer and let $P\in \mathcal \{A\}(k)$. Suppose that for all but a finite number of primes $v$ of $k$, we have $P=rD_v$ for some $D_v\in \mathcal \{A\}(k_v)$. Can one conclude that there exists $D\in \mathcal \{A\}(k)$ such that $P=rD$?A complete answer for the case of the multiplicative group $\{\mathbb \{G\}\}_m$ is classical. We study other instances and in particular obtain an affirmative answer when $r$ is a prime and $\mathcal \{A\}$ is either an elliptic curve or a torus of small dimension with respect to $r$. Without restriction on the dimension of a torus, we produce an example showing that the answer can be negative even when $r$ is a prime.},

author = {Dvornicich, Roberto, Zannier, Umberto},

journal = {Bulletin de la Société Mathématique de France},

keywords = {rationality questions; rational points},

language = {eng},

number = {3},

pages = {317-338},

publisher = {Société mathématique de France},

title = {Local-global divisibility of rational points in some commutative algebraic groups},

url = {http://eudml.org/doc/272481},

volume = {129},

year = {2001},

}

TY - JOUR

AU - Dvornicich, Roberto

AU - Zannier, Umberto

TI - Local-global divisibility of rational points in some commutative algebraic groups

JO - Bulletin de la Société Mathématique de France

PY - 2001

PB - Société mathématique de France

VL - 129

IS - 3

SP - 317

EP - 338

AB - Let $\mathcal {A}$ be a commutative algebraic group defined over a number field $k$. We consider the following question:Let $r$ be a positive integer and let $P\in \mathcal {A}(k)$. Suppose that for all but a finite number of primes $v$ of $k$, we have $P=rD_v$ for some $D_v\in \mathcal {A}(k_v)$. Can one conclude that there exists $D\in \mathcal {A}(k)$ such that $P=rD$?A complete answer for the case of the multiplicative group ${\mathbb {G}}_m$ is classical. We study other instances and in particular obtain an affirmative answer when $r$ is a prime and $\mathcal {A}$ is either an elliptic curve or a torus of small dimension with respect to $r$. Without restriction on the dimension of a torus, we produce an example showing that the answer can be negative even when $r$ is a prime.

LA - eng

KW - rationality questions; rational points

UR - http://eudml.org/doc/272481

ER -

## References

top- [1] N. Bourbaki – « Groupes et algèbres de Lie », ch. 2 et 3, Hermann, Paris, 1972. Zbl0483.22001MR573068
- [2] J.-L. Colliot-Thélène & J.-J. Sansuc – « La $r$-équivalence sur les tores », Ann. Sci. École Norm. Sup.10 (1977), p. 175–229. Zbl0356.14007MR450280
- [3] J.-J. Sansuc – « Groupe de Brauer et arithmétique des groupes linéaires sur un corps de nombres », J. reine angew. Math. 327 (1981), p. 12–80. Zbl0468.14007MR631309
- [4] J.-P. Serre – Algebraic Groups and Class Fields, Springer Verlag, 1988. Zbl0703.14001MR918564

## Citations in EuDML Documents

top## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.