Eigenvalues in the large sieve inequality, II
- [1] Laboratoire CNRS Paul Painlevé, Université Lille 1, 59 655 Villeneuve d’Ascq cedex, France
Journal de Théorie des Nombres de Bordeaux (2010)
- Volume: 22, Issue: 1, page 181-196
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topRamaré, Olivier. "Eigenvalues in the large sieve inequality, II." Journal de Théorie des Nombres de Bordeaux 22.1 (2010): 181-196. <http://eudml.org/doc/116394>.
@article{Ramaré2010,
abstract = {We explore numerically the eigenvalues of the hermitian form\begin\{equation*\} \sum \_\{q\le Q\}\sum \_\{a~\@mod \;^* q\}\Bigl |\sum \_\{n\le N\}\varphi \_n e(na/q)\Bigr |^2 \end\{equation*\}when $N=\sum _\{q\le Q\}\phi (q)$. We improve on the existing upper bound, and produce a (conjectural) plot of the asymptotic distribution of its eigenvalues by exploiting fairly extensive computations. The main outcome is that this asymptotic density most probably exists but is not continuous with respect to the Lebesgue measure.},
affiliation = {Laboratoire CNRS Paul Painlevé, Université Lille 1, 59 655 Villeneuve d’Ascq cedex, France},
author = {Ramaré, Olivier},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Large sieve inequality; circle method; Jackson polynomials; Hausdorff moment problem; large sieve; eigenvalues; upper bound; numerical study; limiting distribution},
language = {eng},
number = {1},
pages = {181-196},
publisher = {Université Bordeaux 1},
title = {Eigenvalues in the large sieve inequality, II},
url = {http://eudml.org/doc/116394},
volume = {22},
year = {2010},
}
TY - JOUR
AU - Ramaré, Olivier
TI - Eigenvalues in the large sieve inequality, II
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2010
PB - Université Bordeaux 1
VL - 22
IS - 1
SP - 181
EP - 196
AB - We explore numerically the eigenvalues of the hermitian form\begin{equation*} \sum _{q\le Q}\sum _{a~\@mod \;^* q}\Bigl |\sum _{n\le N}\varphi _n e(na/q)\Bigr |^2 \end{equation*}when $N=\sum _{q\le Q}\phi (q)$. We improve on the existing upper bound, and produce a (conjectural) plot of the asymptotic distribution of its eigenvalues by exploiting fairly extensive computations. The main outcome is that this asymptotic density most probably exists but is not continuous with respect to the Lebesgue measure.
LA - eng
KW - Large sieve inequality; circle method; Jackson polynomials; Hausdorff moment problem; large sieve; eigenvalues; upper bound; numerical study; limiting distribution
UR - http://eudml.org/doc/116394
ER -
References
top- E. Bombieri, Le grand crible dans la théorie analytique des nombres. Astérisque 18 (1987). Zbl0618.10042MR891718
- J.M. Borwein and A.S. Lewis, On the convergence of moment problems. Trans. Amer. Math. Soc. 325(1) (1991), 249–271. Zbl0741.41021MR1008695
- G. Greaves, An algorithm for the Hausdorff moment problem. Numerische Mathematik 39(2) (1982), 231–238. Zbl0471.65085MR669318
- F. Hausdorff, Summationsmethoden und Momentfolgen. I. Math. Z. 9 (1921), 74–109. Zbl48.2005.01MR1544453
- F. Hausdorff, Summationsmethoden und Momentfolgen. II. Math. Z. 9 (1921), 280–299. Zbl48.2005.02MR1544467
- F. Hausdorff, Momentenprobleme für ein endliches Intervall. Math. Z. 16 (1923), 220–248. Zbl49.0193.01MR1544592
- H.L. Montgomery, Topics in Multiplicative Number Theory. Lecture Notes in Mathematics (Berlin) 227. Springer–Verlag, Berlin–New York, 1971. Zbl0216.03501MR337847
- I.J. Schoenberg, R. Askey and A. Sharma, Hausdorff’s moment problem and expansions in Legendre polynomials. J. Math. Anal. Appl. 86 (1982), 237–245. Zbl0483.44012MR649868
- O. Ramaré, Eigenvalues in the large sieve inequality. Funct. Approximatio, Comment. Math. 37 (2007), 7–35. Zbl1181.11059MR2363835
- A. Selberg, Collected papers. Springer–Verlag, Berlin, 1991. Zbl0729.11001MR1295844
- J. Szabados, On the convergence and saturation problem of the Jackson polynomials. Acta Math. Acad. Sci. Hungar. 24 (1973), 399–406. Zbl0269.42003MR346399
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.