The integral logarithm in Iwasawa theory : an exercise
Jürgen Ritter[1]; Alfred Weiss[2]
- [1] Schnurbeinstraße 14 86391 Deuringen, Germany
- [2] Department of Mathematics University of Alberta Edmonton, AB, Canada T6C 2G1
Journal de Théorie des Nombres de Bordeaux (2010)
- Volume: 22, Issue: 1, page 197-207
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topRitter, Jürgen, and Weiss, Alfred. "The integral logarithm in Iwasawa theory : an exercise." Journal de Théorie des Nombres de Bordeaux 22.1 (2010): 197-207. <http://eudml.org/doc/116395>.
@article{Ritter2010,
abstract = {Let $l$ be an odd prime number and $H$ a finite abelian $l$-group. We describe the unit group of $\Lambda _\wedge [H]$ (the completion of the localization at $l$ of $\mathbb\{Z\}_l[[T]][H]$) as well as the kernel and cokernel of the integral logarithm $L:\Lambda _\wedge [H]^\times \rightarrow \Lambda _\wedge [H]$, which appears in non-commutative Iwasawa theory.},
affiliation = {Schnurbeinstraße 14 86391 Deuringen, Germany; Department of Mathematics University of Alberta Edmonton, AB, Canada T6C 2G1},
author = {Ritter, Jürgen, Weiss, Alfred},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {integral logarithm; Iwasawa theory},
language = {eng},
number = {1},
pages = {197-207},
publisher = {Université Bordeaux 1},
title = {The integral logarithm in Iwasawa theory : an exercise},
url = {http://eudml.org/doc/116395},
volume = {22},
year = {2010},
}
TY - JOUR
AU - Ritter, Jürgen
AU - Weiss, Alfred
TI - The integral logarithm in Iwasawa theory : an exercise
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2010
PB - Université Bordeaux 1
VL - 22
IS - 1
SP - 197
EP - 207
AB - Let $l$ be an odd prime number and $H$ a finite abelian $l$-group. We describe the unit group of $\Lambda _\wedge [H]$ (the completion of the localization at $l$ of $\mathbb{Z}_l[[T]][H]$) as well as the kernel and cokernel of the integral logarithm $L:\Lambda _\wedge [H]^\times \rightarrow \Lambda _\wedge [H]$, which appears in non-commutative Iwasawa theory.
LA - eng
KW - integral logarithm; Iwasawa theory
UR - http://eudml.org/doc/116395
ER -
References
top- C.W. Curtis and I. Reiner, Methods of Representation Theory, I,II. John Wiley & Sons, 1981, 1987. Zbl0616.20001
- B. Coleman, Local units modulo circular units. Proc. AMS 89 (1983), 1–7. Zbl0528.12005MR706497
- I. Fesenko and M. Kurihara, Invitation to higher local fields. Geometry & Topology Monographs 3 (2000), ISSN 1464-8997 (online). Zbl0954.00026MR1804915
- A. Fröhlich, Galois Module Structure of Algebraic Integers. Springer-Verlag, 1983. Zbl0501.12012MR717033
- T. Fukaya and K. Kato, A formulation of conjectures on -adic zeta functions in non-commutative Iwasawa theory. Proc. St. Petersburg Math. Soc. 11 (2005). Zbl1238.11105MR2276851
- K. Kato, Iwasawa theory of totally real fields for Galois extensions of Heisenberg type. Preprint (‘Very preliminary version’ , 2006)
- S. Lang, Cylotomic Fields I-II. Springer GTM 121 (1990). Zbl0704.11038MR1029028
- R. Oliver, Whitehead Groups of Finite Groups. LMS Lecture Notes Series 132, Cambridge (1988). Zbl0636.18001MR933091
- J. Ritter and A. Weiss, Toward equivariant Iwasawa theory, II. Indagationes Mathematicae 15 (2004), 549–572. Zbl1142.11369MR2114937
- J. Ritter and A. Weiss, Toward equivariant Iwasawa theory, III. Mathematische Annalen 336 (2006), 27–49. Zbl1154.11038MR2242618
- J. Ritter and A. Weiss, Non-abelian pseudomeasures and congruences between abelian Iwasawa -functions. Pure and Applied Mathematics Quarterly 4 (2008), 1085–1106. Zbl1193.11104MR2441694
- J. Ritter and A. Weiss, Congruences between abelian pseudomeasures. Math. Res. Lett. 15 (2008), 715–725. Zbl1158.11047MR2424908
- J. Ritter and A. Weiss, Equivariant Iwasawa theory : an example. Documenta Mathematica 13 (2008), 117–129. Zbl1243.11105MR2420909
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.