A note on the Hermite–Rankin constant
Kazuomi Sawatani; Takao Watanabe; Kenji Okuda[1]
- [1] Department of Mathematics Graduate School of Science Osaka University Toyonaka 1-1, Osaka, Japan
Journal de Théorie des Nombres de Bordeaux (2010)
- Volume: 22, Issue: 1, page 209-217
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topSawatani, Kazuomi, Watanabe, Takao, and Okuda, Kenji. "A note on the Hermite–Rankin constant." Journal de Théorie des Nombres de Bordeaux 22.1 (2010): 209-217. <http://eudml.org/doc/116397>.
@article{Sawatani2010,
abstract = {We generalize Poor and Yuen’s inequality to the Hermite–Rankin constant $\gamma _\{n,k\}$ and the Bergé–Martinet constant $\gamma ^\prime_\{n,k\}$. Moreover, we determine explicit values of some low- dimensional Hermite–Rankin and Bergé–Martinet constants by applying Rankin’s inequality and some inequalities proven by Bergé and Martinet to explicit values of $\gamma ^\prime_5, \gamma ^\prime_7$, $\gamma _\{4,2\}$ and $\gamma _n$ ($n \leqq 8$).},
affiliation = {Department of Mathematics Graduate School of Science Osaka University Toyonaka 1-1, Osaka, Japan},
author = {Sawatani, Kazuomi, Watanabe, Takao, Okuda, Kenji},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Hermite-Rankin constant; generalized Bergé-Martinet constants},
language = {eng},
number = {1},
pages = {209-217},
publisher = {Université Bordeaux 1},
title = {A note on the Hermite–Rankin constant},
url = {http://eudml.org/doc/116397},
volume = {22},
year = {2010},
}
TY - JOUR
AU - Sawatani, Kazuomi
AU - Watanabe, Takao
AU - Okuda, Kenji
TI - A note on the Hermite–Rankin constant
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2010
PB - Université Bordeaux 1
VL - 22
IS - 1
SP - 209
EP - 217
AB - We generalize Poor and Yuen’s inequality to the Hermite–Rankin constant $\gamma _{n,k}$ and the Bergé–Martinet constant $\gamma ^\prime_{n,k}$. Moreover, we determine explicit values of some low- dimensional Hermite–Rankin and Bergé–Martinet constants by applying Rankin’s inequality and some inequalities proven by Bergé and Martinet to explicit values of $\gamma ^\prime_5, \gamma ^\prime_7$, $\gamma _{4,2}$ and $\gamma _n$ ($n \leqq 8$).
LA - eng
KW - Hermite-Rankin constant; generalized Bergé-Martinet constants
UR - http://eudml.org/doc/116397
ER -
References
top- E. S. Barnes and M. J. Cohn, On the inner product of positive quadratic forms. J. London Math. Soc. (2) 12 (1975), 32–36. Zbl0312.10013MR387196
- A.-M. Bergé and J. Martinet, Sur un problème de dualité lié aux sphères en géométrie des nombres. J. Number Theory 32 (1989), 14–42. Zbl0677.10022MR1002112
- R. Coulangeon, Réseaux -extrêmes. Proc. London Math. Soc. 73 (1996), 555–574. Zbl0861.11040MR1407461
- J. Martinet, Perfect Lattices in Euclidean Spaces. Springer-Verlag, 2003. Zbl1017.11031MR1957723
- B. Mayer, Constantes d’Hermite et théorie de Voronoï. Thése, Université Bordeaux 1, 2008.
- C. Poor and D. S. Yuen, Linear dependence among Siegel modular forms. Math. Ann. 318 (2000), 205–234. Zbl0972.11035MR1795560
- C. Poor and D. S. Yuen, The extreme core. Abh. Math. Sem. Univ. Hamburg 75 (2005), 1–25. Zbl1082.11026MR2187578
- C. Poor and D. S. Yuen, The Bergé–Martinet constant and slopes of Siegel cusp forms. Bull. London Math. Soc. 38 (2006), 913–924. Zbl1104.11039MR2285245
- R. A. Rankin, On positive definite quadratic forms. J. London Math. Soc. 28 (1953), 309–314. Zbl0050.27401MR55380
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.