The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let be an algebraic number field and the ring of integers of . In this paper, we prove an analogue of Voronoï’s theorem for -lattices and the finiteness of the number of similar isometry classes of perfect -lattices.
We generalize Poor and Yuen’s inequality to the Hermite–Rankin constant and the Bergé–Martinet constant . Moreover, we determine explicit values of some low- dimensional Hermite–Rankin and Bergé–Martinet constants by applying Rankin’s inequality and some inequalities proven by Bergé and Martinet to explicit values of , and ().
We show that the unimodular lattice associated to the rank 20 quaternionic matrix group is a fourth example of an 80-dimensional extremal lattice. Our method is to use the positivity of the -series in conjunction with an enumeration of all the norm 10 vectors. The use of Aschbacher’s theorem on subgroups of finite classical groups (reliant on the classification of finite simple groups) provides one proof that this lattice is distinct from the previous three, while computing the inner product...
We improve the known upper bound of the dimension of an indecomposable unimodular lattice whose shadow has the third largest possible length, .
1. Introduction. On doit à G. Voronoï [Vo] un algorithme de classification complète des formes quadratiques parfaites. Il est dès lors possible, en principe, de déterminer en un temps fini la constante d'Hermite γₙ, qui décrit dans ℝⁿ la densité maximale des empilements de sphères en réseau.
L'énorme complexité de l'algorithme lui donne une limite naturelle: il semble actuellement impensable de dépasser la dimension 8, où les explorations ont déjà fourni des milliers de formes...
Les variétés abéliennes principalement polarisées admettent un espace des modules grossier qu’on sait compactifier de plusieurs façons (compactification de Satake, compactifications toroïdales). Cependant, le problème s’est posé de construire une compactification “modulaire”en termes d’objets géométriques qui permettent de décrire les points du bord. On souhaite aussi compactifier l’application de Torelli qui à chaque courbe algébrique, projective et lisse, associe sa jacobienne. L’exposé présente...
We show that if is an extremal even unimodular lattice of rank with , then is generated by its vectors of norms and . Our result is an extension of Ozeki’s result for the case .
Voronoï ’s algorithm is a method for obtaining the complete list of perfect -dimensional quadratic forms. Its generalization to -forms has the advantage of running in a lower-dimensional space, and furnishes a finite, and complete, classification of -perfect forms ( is a finite subgroup of . We study the standard, -dimensional irreducible representation of the cyclic group of order , and give the, often new, densest -forms. Perfect cyclotomic forms are completely classified for and for...
A Delaunay polytope in a lattice is perfect if any affine transformation that preserve its Delaunay property is a composite of an homothety and an isometry. Perfect Delaunay polytopes are rare in low dimension and here we consider the ones that one can get in lattice that are sections of the Leech lattice.By doing so we are able to find lattices with several orbits of perfect Delaunay polytopes. Also we exhibit Delaunay polytopes which remain Delaunay in some superlattices. We found perfect Delaunay...
Un article précédent paru dans le Séminaire de Théorie des Nombres de Bordeaux contient une description détaillée des orbites de voisines pour les représentants des 15 classes de formes parfaites à 7 variables, non équivalentes à et qui possèdent plus de 28 vecteurs minimaux. Le lecteur trouvera ici le résultat correspondant pour , ainsi qu’une description plus détaillée des voisines de . Ceci termine la classification des formes parfaites en dimension 7. Un premier pas en direction de la classification...
En utilisant la géométrie du demi-plan de Poincaré et des familles de disques classiques - disques de Ford, disques de Farey - nous décrivons les domaines de niveau associés à la constante d'Hermite et au plus court vecteur d'un réseau. Nous en déduisons une évaluation très précise des fonctions de répartition correspondantes, en particulier au voisinage de l'origine.
J’illustre la situation générale par un exemple simple, qui permet de mieux comprendre la géométrie de l’espace des domaines de Voronoï. Ensuite, je donne des résultats généraux sur les arêtes d’un domaine de Voronoï. Finalement, pour les représentants des 15 classes connues de formes parfaites à 7 variables, non équivalentes à et qui possèdent plus de 28 vecteurs minimaux, je fournis une description détaillée de leurs orbites de voisines.
Currently displaying 1 –
20 of
102