Explicit construction of integral bases of radical function fields
Qingquan Wu[1]
- [1] Department of Mathematics and Statistics University of Calgary 2500 University Drive NW Calgary, Alberta T2N 1N4
Journal de Théorie des Nombres de Bordeaux (2010)
- Volume: 22, Issue: 1, page 259-270
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topWu, Qingquan. "Explicit construction of integral bases of radical function fields." Journal de Théorie des Nombres de Bordeaux 22.1 (2010): 259-270. <http://eudml.org/doc/116399>.
@article{Wu2010,
abstract = {We give an explicit construction of an integral basis for a radical function field $K=k(t,\rho )$, where $\rho ^n=D\in k[t]$, under the assumptions $[K:k(t)]=n$ and $\mbox \{char\}(k)\nmid n$. The field discriminant of $K$ is also computed. We explain why these questions are substantially easier than the corresponding ones in number fields. Some formulae for the $P$-signatures of a radical function field are also discussed in this paper.},
affiliation = {Department of Mathematics and Statistics University of Calgary 2500 University Drive NW Calgary, Alberta T2N 1N4},
author = {Wu, Qingquan},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {integral bases; radical function fields},
language = {eng},
number = {1},
pages = {259-270},
publisher = {Université Bordeaux 1},
title = {Explicit construction of integral bases of radical function fields},
url = {http://eudml.org/doc/116399},
volume = {22},
year = {2010},
}
TY - JOUR
AU - Wu, Qingquan
TI - Explicit construction of integral bases of radical function fields
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2010
PB - Université Bordeaux 1
VL - 22
IS - 1
SP - 259
EP - 270
AB - We give an explicit construction of an integral basis for a radical function field $K=k(t,\rho )$, where $\rho ^n=D\in k[t]$, under the assumptions $[K:k(t)]=n$ and $\mbox {char}(k)\nmid n$. The field discriminant of $K$ is also computed. We explain why these questions are substantially easier than the corresponding ones in number fields. Some formulae for the $P$-signatures of a radical function field are also discussed in this paper.
LA - eng
KW - integral bases; radical function fields
UR - http://eudml.org/doc/116399
ER -
References
top- W. Bosma, J. Cannon, and C. Playoust, The Magma algebra system I: The user language. J. Symb. Comp. 24 (1997), 235–265. Zbl0898.68039MR1484478
- J. A. Buchmann and H. W. Lenstra Jr., Approximating rings of integers in number fields. J. Theor. Nombres Bordeaux 6 (1994), 221–260. Zbl0828.11075MR1360644
- H. Cohen, A course in computational algebraic number theory. Springer-Verlag, 1993. Zbl0786.11071MR1228206
- E. Hecke, Vorlesungen über die Theorie der algebraischen Zahlen. Akademische Verlagsgesellschaft, 1954. Zbl0057.27301MR66417
- J. G. Huard, B. K. Spearman, and K. S. Williams, Integral bases for quartic fields with quadratic subfields. J. Number Theory 51 (1995), 103–117. Zbl0826.11048MR1321725
- R. H. Hudson and K. S. Williams, The integers of a cyclic quartic field. Rocky Mountain J. Math. 20 (1990), 145–150. Zbl0707.11078MR1057983
- T. W. Hungerford, Algebra. Springer-Verlag, 1974. Zbl0293.12001MR600654
- K. F. Ireland and M. Rosen, A classical introduction to modern number theory. Springer-Verlag, 1990. Zbl0712.11001MR1070716
- KANT/KASH, Computational Algebraic Number Theory/KAnt SHell. http://www.math.tu-berlin.de/kant/kash.
- E. Lamprecht, Verzweigungsordnungen, Differenten und Ganzheitsbasen bei Radikalerweiterungen. I. Arch. Math. 56 (1991), 569–585. Zbl0735.11062MR1106499
- E. Lamprecht, Existence of and computation of integral bases. Acta Math. Inform. Univ. Ostrav. 6 (1998), 121–128. Zbl1024.11074MR1822521
- H. B. Mann, On integral basis. Proc. Amer. Math. Soc. 9 (1958), 167–172. Zbl0081.26602MR93502
- H. B. Mann and W. Y. Vélez, Prime ideal decomposition in . Monatsh. Math. 81 (1976), 131–139. Zbl0324.12003MR399043
- D. Marcus, Number Fields. Springer-Verlag, 1977. Zbl0383.12001MR457396
- L. R. McCulloh, Integral bases in Kummer extensions of Dedekind fields. Canad. J. Math. 15 (1963), 755–765. Zbl0118.27503MR153668
- M. J. Norris and W. Y. Vélez, Structure theorems for radical extensions of fields. Acta Arith. 38 (1980/81), 111–115. Zbl0492.12011MR604227
- K. Okutsu, Integral basis of the field . Proc. of Japan Acad. Ser. A Math. Sci. 58 (1982), 219–222. Zbl0524.12002MR667638
- M. Pohst and H. Zassenhaus, Algorithmic algebraic number theory. Cambridge University Press, 1997. Zbl0685.12001MR1483321
- P. Ribenboim, Algebraic numbers. John-Wiley & Sons. Inc., 1972. Zbl0247.12002MR340212
- M. Rosen, Number theory in function fields. Springer-Verlag, 2002. Zbl1043.11079MR1876657
- R. Scheidler and A. Stein, Voronoi’s algorithm in purely cubic congruence function fields of unit rank 1. Math. Comp. 69 (2000), 1245–1266. Zbl1042.11068MR1653974
- H. Stichtenoth, Algebraic function fields and codes. Springer-Verlag, 1993. Zbl0816.14011MR1251961
- M. van Hoeij, An algorithm for computing an integral basis in an algebraic function field. J. Symb. Comp. 18 (1994), 353–363. Zbl0834.68059MR1324494
- W. Y. Vélez, Prime ideal decomposition in . Pacific J. Math. 75 (1978), 589–600. Zbl0344.12002MR506215
- P. G. Walsh, A polynomial-time complexity bound for the computation of the singular part of a Puiseux expansion of an algebraic function. Math. Comp. 69 (2000), 1167–1182. Zbl1042.14039MR1710624
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.