On the parity of generalized partition functions, III
Fethi Ben Saïd[1]; Jean-Louis Nicolas[2]; Ahlem Zekraoui[1]
- [1] Université de Monastir Faculté des Sciences de Monastir Avenue de l’Environement 5000 Monastir, Tunisie
- [2] Université de Lyon 1 Institut Camile Jordan, UMR 5208 Batiment Doyen Jean Braconnier 21 Avenue Claude Bernard F-69622 Villeurbanne, France
Journal de Théorie des Nombres de Bordeaux (2010)
- Volume: 22, Issue: 1, page 51-78
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topBen Saïd, Fethi, Nicolas, Jean-Louis, and Zekraoui, Ahlem. "On the parity of generalized partition functions, III." Journal de Théorie des Nombres de Bordeaux 22.1 (2010): 51-78. <http://eudml.org/doc/116400>.
@article{BenSaïd2010,
abstract = {Improving on some results of J.-L. Nicolas [15], the elements of the set $\{\mathcal\{A\}\}=\{\mathcal\{A\}\}(1+z+z^3+z^4+z^5)$, for which the partition function $p(\{\mathcal\{A\}\},n)$ (i.e. the number of partitions of $n$ with parts in $\{\mathcal\{A\}\}$) is even for all $n\ge 6$ are determined. An asymptotic estimate to the counting function of this set is also given.},
affiliation = {Université de Monastir Faculté des Sciences de Monastir Avenue de l’Environement 5000 Monastir, Tunisie; Université de Lyon 1 Institut Camile Jordan, UMR 5208 Batiment Doyen Jean Braconnier 21 Avenue Claude Bernard F-69622 Villeurbanne, France; Université de Monastir Faculté des Sciences de Monastir Avenue de l’Environement 5000 Monastir, Tunisie},
author = {Ben Saïd, Fethi, Nicolas, Jean-Louis, Zekraoui, Ahlem},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Partitions; periodic sequences; order of a polynomial; orbits; $2$-adic numbers; counting function; Selberg-Delange formula; partitions; 2-adic numbers; counting functions},
language = {eng},
number = {1},
pages = {51-78},
publisher = {Université Bordeaux 1},
title = {On the parity of generalized partition functions, III},
url = {http://eudml.org/doc/116400},
volume = {22},
year = {2010},
}
TY - JOUR
AU - Ben Saïd, Fethi
AU - Nicolas, Jean-Louis
AU - Zekraoui, Ahlem
TI - On the parity of generalized partition functions, III
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2010
PB - Université Bordeaux 1
VL - 22
IS - 1
SP - 51
EP - 78
AB - Improving on some results of J.-L. Nicolas [15], the elements of the set ${\mathcal{A}}={\mathcal{A}}(1+z+z^3+z^4+z^5)$, for which the partition function $p({\mathcal{A}},n)$ (i.e. the number of partitions of $n$ with parts in ${\mathcal{A}}$) is even for all $n\ge 6$ are determined. An asymptotic estimate to the counting function of this set is also given.
LA - eng
KW - Partitions; periodic sequences; order of a polynomial; orbits; $2$-adic numbers; counting function; Selberg-Delange formula; partitions; 2-adic numbers; counting functions
UR - http://eudml.org/doc/116400
ER -
References
top- N. Baccar, Sets with even partition functions and 2-adic integers. Periodica Math. Hung. 55 (2) (2007), 177–193. Zbl1164.11066MR2375042
- N. Baccar and F. Ben Saïd, On sets such that the partition function is even from a certain point on. International Journal of Number Theory 5 n3 (2009), 407–428. Zbl1214.11117MR2529082
- N. Baccar, F. Ben Saïd and A. Zekraoui, On the divisor function of sets with even partition functions. Acta Math. Hungarica 112 (1-2) (2006), 25–37. Zbl1121.11071MR2251128
- F. Ben Saïd, On a conjecture of Nicolas-Sárközy about partitions. Journal of Number Theory 95 (2002), 209–226. Zbl1041.11066MR1924098
- F. Ben Saïd, On some sets with even valued partition function. The Ramanujan Journal 9 (2005), 63–75. Zbl1145.11073MR2166378
- F. Ben Saïd and J.-L. Nicolas, Sets of parts such that the partition function is even. Acta Arithmetica 106 (2003), 183–196. Zbl1052.11069MR1958984
- F. Ben Saïd and J.-L. Nicolas, Sur une application de la formule de Selberg-Delange. Colloquium Mathematicum 98 n2 (2003), 223–247. Zbl1051.11049MR2033110
- F. Ben Saïd and J.-L. Nicolas, Even partition functions. Séminaire Lotharingien de Combinatoire 46 (2002), B 46i (http//www.mat.univie.ac.at/ slc/). Zbl1042.11008MR1921679
- F. Ben Saïd, H. Lahouar and J.-L. Nicolas, On the counting function of the sets of parts such that the partition function takes even values for n large enough. Discrete Mathematics 306 (2006), 1089–1096. Zbl1109.05019MR2245637
- P. M. Cohn, Algebra, Volume 1, Second Edition. John Wiley and Sons Ltd, 1988). MR663370
- H. Halberstam and H.-E. Richert, Sieve methods. Academic Press, New York, 1974. Zbl0298.10026MR424730
- H. Lahouar, Fonctions de partitions à parité périodique. European Journal of Combinatorics 24 (2003), 1089–1096. Zbl1049.11110MR2024560
- R. Lidl and H. Niederreiter, Introduction to finite fields and their applications. Cambridge University Press, revised edition, 1994. Zbl0820.11072MR1294139
- J.-L. Nicolas, I.Z. Ruzsa and A. Sárközy, On the parity of additive representation functions. J. Number Theory 73 (1998), 292–317. Zbl0921.11050MR1657968
- J.-L. Nicolas, On the parity of generalized partition functions II. Periodica Mathematica Hungarica 43 (2001), 177–189. Zbl0980.11049MR1830575
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.