4-core partitions and class numbers
Many links exist between ordinary partitions and partitions with parts in the “gaps”. In this paper, we explore combinatorial explanations for some of these links, along with some natural generalizations. In particular, if we let be the number of partitions of n into j parts where each part is ≡ k (mod m), 1 ≤ k ≤ m, and we let be the number of partitions of n into j parts where each part is ≡ k (mod m) with parts of size k in the gaps, then .
Consider the linear congruence equation for , . Let denote the generalized gcd of and which is the largest with dividing and simultaneously. Let be all positive divisors of . For each , define . K. Bibak et al. (2016) gave a formula using Ramanujan sums for the number of solutions of the above congruence equation with some gcd restrictions on . We generalize their result with generalized gcd restrictions on and prove that for the above linear congruence, the number of solutions...
We offer some relations and congruences for two interesting spt-type functions, which together form a relation to Andrews' spt function.