Ternary quadratic forms with rational zeros
John Friedlander[1]; Henryk Iwaniec[2]
- [1] University of Toronto 40 St. George Street Toronto, ON M5S 2E4, Canada
- [2] Department of Mathematics Rutgers University 110 Frelinghuysen Rd. Piscataway, NJ 08903, USA
Journal de Théorie des Nombres de Bordeaux (2010)
- Volume: 22, Issue: 1, page 97-113
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topFriedlander, John, and Iwaniec, Henryk. "Ternary quadratic forms with rational zeros." Journal de Théorie des Nombres de Bordeaux 22.1 (2010): 97-113. <http://eudml.org/doc/116402>.
@article{Friedlander2010,
abstract = {We consider the Legendre quadratic forms\[\varphi \_\{ab\}(x,y,z)= ax^2+by^2-z^2 \]and, in particular, a question posed by J–P. Serre, to count the number of pairs of integers $1\le a\le A, \, 1\le b \le B$, for which the form $\varphi _\{ab\}$ has a non-trivial rational zero. Under certain mild conditions on the integers $a, \, b$, we are able to find the asymptotic formula for the number of such forms.},
affiliation = {University of Toronto 40 St. George Street Toronto, ON M5S 2E4, Canada; Department of Mathematics Rutgers University 110 Frelinghuysen Rd. Piscataway, NJ 08903, USA},
author = {Friedlander, John, Iwaniec, Henryk},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {quadratic forms; non-trivial zero; character sums with multiplicative coefficients},
language = {eng},
number = {1},
pages = {97-113},
publisher = {Université Bordeaux 1},
title = {Ternary quadratic forms with rational zeros},
url = {http://eudml.org/doc/116402},
volume = {22},
year = {2010},
}
TY - JOUR
AU - Friedlander, John
AU - Iwaniec, Henryk
TI - Ternary quadratic forms with rational zeros
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2010
PB - Université Bordeaux 1
VL - 22
IS - 1
SP - 97
EP - 113
AB - We consider the Legendre quadratic forms\[\varphi _{ab}(x,y,z)= ax^2+by^2-z^2 \]and, in particular, a question posed by J–P. Serre, to count the number of pairs of integers $1\le a\le A, \, 1\le b \le B$, for which the form $\varphi _{ab}$ has a non-trivial rational zero. Under certain mild conditions on the integers $a, \, b$, we are able to find the asymptotic formula for the number of such forms.
LA - eng
KW - quadratic forms; non-trivial zero; character sums with multiplicative coefficients
UR - http://eudml.org/doc/116402
ER -
References
top- Cojocaru A. C. and Murty M. R., An Introduction to Sieve Methods and their Applications. London Math. Soc. Student Texts 66. Cambridge University Press, Cambridge, 2005. Zbl1121.11063MR2200366
- Guo C. R., On solvability of ternary quadratic forms. Proc. London Math. Soc. 70 (1995), 241–263. Zbl0839.11016MR1309229
- Fouvry É. and Klüners J., On the 4-rank of class groups of quadratic number fields. Invent. Math. 167 (2007), 455–513. Zbl1126.11062MR2276261
- Heilbronn H., On the averages of some arithmetical functions of two variables. Mathematika 5 (1958), 1–7. Zbl0125.02604MR97362
- Iwaniec H., Rosser’s sieve. Acta Arith. 36 (1980), 171–202. Zbl0435.10029MR581917
- Serre J–P., A Course of Arithmetic. Springer, New York, 1973. Zbl0256.12001
- Serre J–P., Spécialisation des éléments de . C. R. Acad. Sci. Paris Sér. I Math. 311 (1990), 397–402. Zbl0711.13002MR1075658
- Titchmarsh E. C., The Theory of the Riemann Zeta-Function, 2nd ed., revised by D.R. Heath-Brown. Clarendon Press, Oxford, 1986. Zbl0601.10026MR882550
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.