Ternary quadratic forms with rational zeros
John Friedlander[1]; Henryk Iwaniec[2]
- [1] University of Toronto 40 St. George Street Toronto, ON M5S 2E4, Canada
- [2] Department of Mathematics Rutgers University 110 Frelinghuysen Rd. Piscataway, NJ 08903, USA
Journal de Théorie des Nombres de Bordeaux (2010)
- Volume: 22, Issue: 1, page 97-113
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topReferences
top- Cojocaru A. C. and Murty M. R., An Introduction to Sieve Methods and their Applications. London Math. Soc. Student Texts 66. Cambridge University Press, Cambridge, 2005. Zbl1121.11063MR2200366
- Guo C. R., On solvability of ternary quadratic forms. Proc. London Math. Soc. 70 (1995), 241–263. Zbl0839.11016MR1309229
- Fouvry É. and Klüners J., On the 4-rank of class groups of quadratic number fields. Invent. Math. 167 (2007), 455–513. Zbl1126.11062MR2276261
- Heilbronn H., On the averages of some arithmetical functions of two variables. Mathematika 5 (1958), 1–7. Zbl0125.02604MR97362
- Iwaniec H., Rosser’s sieve. Acta Arith. 36 (1980), 171–202. Zbl0435.10029MR581917
- Serre J–P., A Course of Arithmetic. Springer, New York, 1973. Zbl0256.12001
- Serre J–P., Spécialisation des éléments de . C. R. Acad. Sci. Paris Sér. I Math. 311 (1990), 397–402. Zbl0711.13002MR1075658
- Titchmarsh E. C., The Theory of the Riemann Zeta-Function, 2nd ed., revised by D.R. Heath-Brown. Clarendon Press, Oxford, 1986. Zbl0601.10026MR882550