(Non)Automaticity of number theoretic functions
- [1] University of Waterloo Department of Pure Mathematics 200 University Avenue West Waterloo, Ontario N2L 3G1, Canada
Journal de Théorie des Nombres de Bordeaux (2010)
- Volume: 22, Issue: 2, page 339-352
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topCoons, Michael. "(Non)Automaticity of number theoretic functions." Journal de Théorie des Nombres de Bordeaux 22.2 (2010): 339-352. <http://eudml.org/doc/116406>.
@article{Coons2010,
abstract = {Denote by $\lambda (n)$ Liouville’s function concerning the parity of the number of prime divisors of $n$. Using a theorem of Allouche, Mendès France, and Peyrière and many classical results from the theory of the distribution of prime numbers, we prove that $\lambda (n)$ is not $k$–automatic for any $k> 2$. This yields that $\sum _\{n=1\}^\infty \lambda (n) X^n\in \mathbb\{F\}_p[[X]]$ is transcendental over $\mathbb\{F\}_p(X)$ for any prime $p>2$. Similar results are proven (or reproven) for many common number–theoretic functions, including $\varphi $, $\mu $, $\Omega $, $\omega $, $\rho $, and others.},
affiliation = {University of Waterloo Department of Pure Mathematics 200 University Avenue West Waterloo, Ontario N2L 3G1, Canada},
author = {Coons, Michael},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {arithmetic functions; automaticity},
language = {eng},
number = {2},
pages = {339-352},
publisher = {Université Bordeaux 1},
title = {(Non)Automaticity of number theoretic functions},
url = {http://eudml.org/doc/116406},
volume = {22},
year = {2010},
}
TY - JOUR
AU - Coons, Michael
TI - (Non)Automaticity of number theoretic functions
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2010
PB - Université Bordeaux 1
VL - 22
IS - 2
SP - 339
EP - 352
AB - Denote by $\lambda (n)$ Liouville’s function concerning the parity of the number of prime divisors of $n$. Using a theorem of Allouche, Mendès France, and Peyrière and many classical results from the theory of the distribution of prime numbers, we prove that $\lambda (n)$ is not $k$–automatic for any $k> 2$. This yields that $\sum _{n=1}^\infty \lambda (n) X^n\in \mathbb{F}_p[[X]]$ is transcendental over $\mathbb{F}_p(X)$ for any prime $p>2$. Similar results are proven (or reproven) for many common number–theoretic functions, including $\varphi $, $\mu $, $\Omega $, $\omega $, $\rho $, and others.
LA - eng
KW - arithmetic functions; automaticity
UR - http://eudml.org/doc/116406
ER -
References
top- B. Adamczewski and Y. Bugeaud, On the complexity of algebraic numbers. I. Expansions in integer bases. Ann. of Math. (2) 165 (2007), no. 2, 547–565. Zbl1195.11094MR2299740
- J.-P. Allouche, Note on the transcendence of a generating function. New trends in probability and statistics. Vol. 4 (Palanga, 1996), VSP, Utrecht, 1997, pp. 461–465. Zbl0932.11017MR1653629
- J.-P. Allouche, Transcendence of formal power series with rational coefficients. Theoret. Comput. Sci. 218 (1999), no. 1, 143–160, WORDS (Rouen, 1997). Zbl0916.68123MR1687784
- J.-P. Allouche and H. Cohen, Dirichlet series and curious infinite products. Bull. London Math. Soc. 17 (1985), no. 6, 531–538. Zbl0577.10036MR813734
- J.-P. Allouche, M. Mendès France, and J. Peyrière, Automatic Dirichlet series. J. Number Theory 81 (2000), no. 2, 359–373. Zbl0971.11006MR1752260
- J.-P. Allouche and J. Shallit, Automatic sequences. Cambridge University Press, Cambridge, 2003. Zbl1086.11015MR1997038
- W. D. Banks, F. Luca, and I. E. Shparlinski, Irrationality of power series for various number theoretic functions. Manuscripta Math. 117 (2005), no. 2, 183–197. Zbl1072.11002MR2150480
- P. Borwein and M. Coons, Transcendence of power series for some number theoretic functions. Proc. Amer. Math. Soc. 137 (2009), no. 4, 1303–1305. Zbl1236.11063MR2465652
- F. Carlson, Über Potenzreihen mit ganzzahligen Koeffizienten. Math. Zeitschr. (1921), no. 9, 1–13. Zbl48.1208.02MR1544447
- G. Christol, Ensembles presque périodiques -reconnaissables. Theoret. Comput. Sci. 9 (1979), no. 1, 141–145. Zbl0402.68044MR535129
- A. Cobham, Uniform tag sequences. Math. Systems Theory 6 (1972), 164–192. Zbl0253.02029MR457011
- J. B. Conrey, More than two fifths of the zeros of the Riemann zeta function are on the critical line. J. Reine Angew. Math. 399 (1989), 1–26. Zbl0668.10044MR1004130
- Ch.-J. de la Vallée Poussin, Recherches analytiques de la théorie des nombres premiers. Ann. Soc. Scient. Bruxelles 20 (1896), 183–256.
- P. Fatou, Séries trigonométriques et séries de Taylor. Acta Math. (1906), no. 30, 335–400. Zbl37.0283.01MR1555035
- J. Hadamard, Sur la distribution des zéros de la fonction et ses conséquences arithmétiques. Bull. Soc. Math. France 24 (1896), 199–220. Zbl27.0154.01MR1504264
- J. Hartmanis and H. Shank, On the recognition of primes by automata. J. Assoc. Comput. Mach. 15 (1968), 382–389. Zbl0164.05201MR235916
- E. Landau and A. Walfisz, Über die Nichtfortsetzbarkeit einiger durch Dirichletsche Reihen definierter Funktionen. Palermo Rend. (1920), no. 44, 82–86. Zbl47.0287.02
- K. Mahler, Arithmetische Eigenschaften der Lösungen einer Klasse von Funktionalgleichungen. Math. Ann. 101 (1929), no. 1, 342–366. Zbl55.0115.01MR1512537
- M. Minsky and S. Papert, Unrecognizable sets of numbers. J. Assoc. Comput. Mach. 13 (1966), 281–286. Zbl0166.00601MR207481
- K. Nishioka, Mahler functions and transcendence. Lecture Notes in Mathematics, vol. 1631, Springer-Verlag, Berlin, 1996. Zbl0876.11034MR1439966
- R. W. Ritchie, Finite automata and the set of squares. J. Assoc. Comput. Mach. 10 (1963), 528–531. Zbl0118.12601MR167374
- A. Selberg, On the zeros of Riemann’s zeta-function. Skr. Norske Vid. Akad. Oslo I. 1942 (1942), no. 10, 59 pp. Zbl0028.11101MR10712
- J. Shallit, Automaticity IV: Sequences, sets, and diversity. J. Théor. Nombres Bordeaux 8 (1996), no. 2, 347–367. Zbl0876.11010MR1438474
- E. C. Titchmarsh, The theory of the Riemann zeta-function. second ed., The Clarendon Press Oxford University Press, New York, 1986, Edited and with a preface by D. R. Heath-Brown. Zbl0601.10026MR882550
- H. von Mangoldt, Zu Riemanns Abhandlung über die Anzahle der Primzahlen unter einer gegebenen Grösse. J. Reine Angew. Math. 144 (1895), 255–305.
- S. Yazdani, Multiplicative functions and -automatic sequences. J. Théor. Nombres Bordeaux 13 (2001), no. 2, 651–658. Zbl1002.11025MR1879677
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.