Multiplicative functions and k -automatic sequences

Soroosh Yazdani

Journal de théorie des nombres de Bordeaux (2001)

  • Volume: 13, Issue: 2, page 651-658
  • ISSN: 1246-7405

Abstract

top
A sequence is called k -automatic if the n ’th term in the sequence can be generated by a finite state machine, reading n in base k as input. We show that for many multiplicative functions, the sequence ( f ( n ) mod v ) n 1 is not k -automatic. Among these multiplicative functions are γ m ( n ) , σ m ( n ) , μ ( n ) et φ ( n ) .

How to cite

top

Yazdani, Soroosh. "Multiplicative functions and $k$-automatic sequences." Journal de théorie des nombres de Bordeaux 13.2 (2001): 651-658. <http://eudml.org/doc/248691>.

@article{Yazdani2001,
abstract = {A sequence is called $k$-automatic if the $n$’th term in the sequence can be generated by a finite state machine, reading $n$ in base $k$ as input. We show that for many multiplicative functions, the sequence $(f (n) \text\{ mod \} v)_\{n \ge 1\}$ is not $k$-automatic. Among these multiplicative functions are $\gamma _m(n), \sigma _m(n), \mu (n)$ et $\phi ( n)$.},
author = {Yazdani, Soroosh},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {multiplicative functions; finite automata; transcendence},
language = {eng},
number = {2},
pages = {651-658},
publisher = {Université Bordeaux I},
title = {Multiplicative functions and $k$-automatic sequences},
url = {http://eudml.org/doc/248691},
volume = {13},
year = {2001},
}

TY - JOUR
AU - Yazdani, Soroosh
TI - Multiplicative functions and $k$-automatic sequences
JO - Journal de théorie des nombres de Bordeaux
PY - 2001
PB - Université Bordeaux I
VL - 13
IS - 2
SP - 651
EP - 658
AB - A sequence is called $k$-automatic if the $n$’th term in the sequence can be generated by a finite state machine, reading $n$ in base $k$ as input. We show that for many multiplicative functions, the sequence $(f (n) \text{ mod } v)_{n \ge 1}$ is not $k$-automatic. Among these multiplicative functions are $\gamma _m(n), \sigma _m(n), \mu (n)$ et $\phi ( n)$.
LA - eng
KW - multiplicative functions; finite automata; transcendence
UR - http://eudml.org/doc/248691
ER -

References

top
  1. [1] J.-P. Allouche, Sur la transcendance de la série formelle π. Sém. Théor. Nombres Bordeaux2 (1990), 103-117. Zbl0709.11067
  2. [2] J.-P. Allouche, D.S. Thakur, Automata and transcendence of the Tate period in finite characteristic. Proc. Amer. Math. Soc.127 (1999), 1309-1312. Zbl0926.11038MR1476112
  3. [3] G. Christol, Ensembles presque periodiques k-reconnaissables. Theoret. Comput. Sci.9 (1979), 141-145. Zbl0402.68044MR535129
  4. [4] G. Christol, T. Kamae, M. Mendès France, G. Rauzy, Suites algébriques, automates et substitutions. Bull. Soc. Math. France108 (1980), 401-419. Zbl0472.10035MR614317
  5. [5] A. Cobham, Uniform tag sequences. Math. Systems Theory6 (1972), 164-192. Zbl0253.02029MR457011
  6. [6] P. Erdös, G. Szekeres, Über die Anzahl der Abelschen Gruppen gegebener Ordnung und über ein verwandtes zahlentheoretisches Problem. Acta Sci. Math.(Szeged) 7 (1935), 95-102. Zbl60.0893.02JFM60.0893.02
  7. [7] A. Ivi, P. Shiu, The distribution of powerful integers. Illinois J. Math.26 (1982), 576-590. Zbl0484.10024MR674226
  8. [8] M. Minsky, S. Papert, Unrecognizable sets of numbers. J. Assoc. Comput. Mach.13 (1966), 281-286. Zbl0166.00601MR207481
  9. [9] R. Sivaramakrishnan, Classical theory of arithmetic functions. Monographs and Textbooks in Pure and Applied Mathematics126, Marcel Dekker, Inc., New York, 1989. Zbl0657.10001MR980259

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.