Multiplicative functions and -automatic sequences
Journal de théorie des nombres de Bordeaux (2001)
- Volume: 13, Issue: 2, page 651-658
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topYazdani, Soroosh. "Multiplicative functions and $k$-automatic sequences." Journal de théorie des nombres de Bordeaux 13.2 (2001): 651-658. <http://eudml.org/doc/248691>.
@article{Yazdani2001,
abstract = {A sequence is called $k$-automatic if the $n$’th term in the sequence can be generated by a finite state machine, reading $n$ in base $k$ as input. We show that for many multiplicative functions, the sequence $(f (n) \text\{ mod \} v)_\{n \ge 1\}$ is not $k$-automatic. Among these multiplicative functions are $\gamma _m(n), \sigma _m(n), \mu (n)$ et $\phi ( n)$.},
author = {Yazdani, Soroosh},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {multiplicative functions; finite automata; transcendence},
language = {eng},
number = {2},
pages = {651-658},
publisher = {Université Bordeaux I},
title = {Multiplicative functions and $k$-automatic sequences},
url = {http://eudml.org/doc/248691},
volume = {13},
year = {2001},
}
TY - JOUR
AU - Yazdani, Soroosh
TI - Multiplicative functions and $k$-automatic sequences
JO - Journal de théorie des nombres de Bordeaux
PY - 2001
PB - Université Bordeaux I
VL - 13
IS - 2
SP - 651
EP - 658
AB - A sequence is called $k$-automatic if the $n$’th term in the sequence can be generated by a finite state machine, reading $n$ in base $k$ as input. We show that for many multiplicative functions, the sequence $(f (n) \text{ mod } v)_{n \ge 1}$ is not $k$-automatic. Among these multiplicative functions are $\gamma _m(n), \sigma _m(n), \mu (n)$ et $\phi ( n)$.
LA - eng
KW - multiplicative functions; finite automata; transcendence
UR - http://eudml.org/doc/248691
ER -
References
top- [1] J.-P. Allouche, Sur la transcendance de la série formelle π. Sém. Théor. Nombres Bordeaux2 (1990), 103-117. Zbl0709.11067
- [2] J.-P. Allouche, D.S. Thakur, Automata and transcendence of the Tate period in finite characteristic. Proc. Amer. Math. Soc.127 (1999), 1309-1312. Zbl0926.11038MR1476112
- [3] G. Christol, Ensembles presque periodiques k-reconnaissables. Theoret. Comput. Sci.9 (1979), 141-145. Zbl0402.68044MR535129
- [4] G. Christol, T. Kamae, M. Mendès France, G. Rauzy, Suites algébriques, automates et substitutions. Bull. Soc. Math. France108 (1980), 401-419. Zbl0472.10035MR614317
- [5] A. Cobham, Uniform tag sequences. Math. Systems Theory6 (1972), 164-192. Zbl0253.02029MR457011
- [6] P. Erdös, G. Szekeres, Über die Anzahl der Abelschen Gruppen gegebener Ordnung und über ein verwandtes zahlentheoretisches Problem. Acta Sci. Math.(Szeged) 7 (1935), 95-102. Zbl60.0893.02JFM60.0893.02
- [7] A. Ivi, P. Shiu, The distribution of powerful integers. Illinois J. Math.26 (1982), 576-590. Zbl0484.10024MR674226
- [8] M. Minsky, S. Papert, Unrecognizable sets of numbers. J. Assoc. Comput. Mach.13 (1966), 281-286. Zbl0166.00601MR207481
- [9] R. Sivaramakrishnan, Classical theory of arithmetic functions. Monographs and Textbooks in Pure and Applied Mathematics126, Marcel Dekker, Inc., New York, 1989. Zbl0657.10001MR980259
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.