Weber’s class number problem in the cyclotomic -extension of , II
Takashi Fukuda[1]; Keiichi Komatsu[2]
- [1] Department of Mathematics College of Industrial Technology Nihon University 2-11-1 Shin-ei, Narashino, Chiba, Japan
- [2] Department of Mathematics School of Science and Engineering Waseda University 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
Journal de Théorie des Nombres de Bordeaux (2010)
- Volume: 22, Issue: 2, page 359-368
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topFukuda, Takashi, and Komatsu, Keiichi. "Weber’s class number problem in the cyclotomic $\mathbb{Z}_2$-extension of $\mathbb{Q}$, II." Journal de Théorie des Nombres de Bordeaux 22.2 (2010): 359-368. <http://eudml.org/doc/116408>.
@article{Fukuda2010,
abstract = {Let $h_n$ denote the class number of $n$-th layer of the cyclotomic $\mathbb\{Z\}_2$-extension of $\mathbb\{Q\}$. Weber proved that $h_n\;\;(n\ge 1)$ is odd and Horie proved that $h_n\;\;(n\ge 1)$ is not divisible by a prime number $\ell $ satisfying $\ell \equiv 3,\,5\hspace\{4.44443pt\}(\@mod \; 8)$. In a previous paper, the authors showed that $h_n\;\;(n\ge 1)$ is not divisible by a prime number $\ell $ less than $10^7$. In this paper, by investigating properties of a special unit more precisely, we show that $h_n\;\;(n\ge 1)$ is not divisible by a prime number $\ell $ less than $1.2\cdot 10^8$. Our argument also leads to the conclusion that $h_n\;\;(n\ge 1)$ is not divisible by a prime number $\ell $ satisfying $\ell \lnot \equiv \pm \;1\hspace\{4.44443pt\}(\@mod \; 16)$.},
affiliation = {Department of Mathematics College of Industrial Technology Nihon University 2-11-1 Shin-ei, Narashino, Chiba, Japan; Department of Mathematics School of Science and Engineering Waseda University 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan},
author = {Fukuda, Takashi, Komatsu, Keiichi},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {cyclotomic -extension of ; class number},
language = {eng},
number = {2},
pages = {359-368},
publisher = {Université Bordeaux 1},
title = {Weber’s class number problem in the cyclotomic $\mathbb\{Z\}_2$-extension of $\mathbb\{Q\}$, II},
url = {http://eudml.org/doc/116408},
volume = {22},
year = {2010},
}
TY - JOUR
AU - Fukuda, Takashi
AU - Komatsu, Keiichi
TI - Weber’s class number problem in the cyclotomic $\mathbb{Z}_2$-extension of $\mathbb{Q}$, II
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2010
PB - Université Bordeaux 1
VL - 22
IS - 2
SP - 359
EP - 368
AB - Let $h_n$ denote the class number of $n$-th layer of the cyclotomic $\mathbb{Z}_2$-extension of $\mathbb{Q}$. Weber proved that $h_n\;\;(n\ge 1)$ is odd and Horie proved that $h_n\;\;(n\ge 1)$ is not divisible by a prime number $\ell $ satisfying $\ell \equiv 3,\,5\hspace{4.44443pt}(\@mod \; 8)$. In a previous paper, the authors showed that $h_n\;\;(n\ge 1)$ is not divisible by a prime number $\ell $ less than $10^7$. In this paper, by investigating properties of a special unit more precisely, we show that $h_n\;\;(n\ge 1)$ is not divisible by a prime number $\ell $ less than $1.2\cdot 10^8$. Our argument also leads to the conclusion that $h_n\;\;(n\ge 1)$ is not divisible by a prime number $\ell $ satisfying $\ell \lnot \equiv \pm \;1\hspace{4.44443pt}(\@mod \; 16)$.
LA - eng
KW - cyclotomic -extension of ; class number
UR - http://eudml.org/doc/116408
ER -
References
top- H. Bauer, Numeriche Bestimmung von Klassenzahlen reeller zyklischer Zahlkörper. J. Number Theory 1 (1969), 161–162. Zbl0167.32301MR240072
- H. Cohn, A numerical study of Weber’s real class number calculation I. Numer. Math. 2 (1960), 347–362. Zbl0117.27501MR122809
- T. Fukuda and K. Komatsu, Weber’s class number problem in the cyclotomic -extension of . Experimental Math. 18 (2009), 213–222. Zbl1189.11033MR2549691
- K. Horie, Ideal class groups of Iwasawa-theoritical abelian extensions over the rational field. J. London Math. Soc. 66 (2002), 257–275. Zbl1011.11072MR1920401
- K. Horie, The ideal class group of the basic -extension over an imaginary quadratic field. Tohoku Math. J. 57 (2005), 375–394. Zbl1128.11051MR2154097
- K. Horie, Triviality in ideal class groups of Iwasawa-theoretical abelian number fields. J. Math. Soc. Japan 57 (2005), 827–857. Zbl1160.11357MR2139736
- K. Horie, Primary components of the ideal class groups of Iwasawa-theoretical abelian number field. J. Math. Soc. Japan 59 (2007), 811–824. Zbl1128.11052MR2344829
- K. Horie, Certain primary components of the ideal class group of the -extension over the rationals. Tohoku Math. J. 59 (2007), 259–291. Zbl1202.11050MR2347423
- K. Horie and M. Horie, The ideal class group of the -extension over the rationals. Tohoku Math. J., 61 (2009), 551–570. Zbl1238.11101MR2598249
- J. M. Masley, Class numbers of real cyclic number fields with small conductor. Compositio Math. 37 (1978), 297–319. Zbl0428.12003MR511747
- F. J. van der Linden, Class Number Computations of Real Abelian Number Fields. Math. Comp. 39 (1982), 693–707. Zbl0505.12010MR669662
- L. C. Washington, Class numbers and -extensions. Math. Ann. 214 (1975), 177–193. Zbl0302.12007MR364182
- L. C. Washington, The non--part of the class number in a cyclotomic -extension. Inv. Math. 49 (1978), 87–97. Zbl0403.12007MR511097
- H. Weber, Theorie der Abel’schen Zahlkörper. Acta Math. 8 (1886), 193–263. MR1554698
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.