Class numbers of real cyclic number fields with small conductor

John Myron Masley

Compositio Mathematica (1978)

  • Volume: 37, Issue: 3, page 297-319
  • ISSN: 0010-437X

How to cite

top

Masley, John Myron. "Class numbers of real cyclic number fields with small conductor." Compositio Mathematica 37.3 (1978): 297-319. <http://eudml.org/doc/89385>.

@article{Masley1978,
author = {Masley, John Myron},
journal = {Compositio Mathematica},
keywords = {real cyclic number fields; cyclotomic fields; class number one; tables of class numbers; genus field},
language = {eng},
number = {3},
pages = {297-319},
publisher = {Sijthoff et Noordhoff International Publishers},
title = {Class numbers of real cyclic number fields with small conductor},
url = {http://eudml.org/doc/89385},
volume = {37},
year = {1978},
}

TY - JOUR
AU - Masley, John Myron
TI - Class numbers of real cyclic number fields with small conductor
JO - Compositio Mathematica
PY - 1978
PB - Sijthoff et Noordhoff International Publishers
VL - 37
IS - 3
SP - 297
EP - 319
LA - eng
KW - real cyclic number fields; cyclotomic fields; class number one; tables of class numbers; genus field
UR - http://eudml.org/doc/89385
ER -

References

top
  1. [1] H. Bauer: Numerische Bestimmung von Klassenzahlen reeller zyklischer Zahlkörper. J. of Number Theory1 (1969) 161-162. Zbl0167.32301MR240072
  2. [2] H. Bauer: Die 2-Klassenzahlen spezieller quadratischer Zahlkörper, J. Reine Angew. Math.252 (1972), 79-81. Zbl0231.12011MR311621
  3. [3] A. Fröhlich: On the class group of relatively Abelian fields. Quart. J. Math. Oxford Ser. (2) 3 (1952) 98-106. Zbl0049.16102MR52459
  4. [4] A. Fröhlich: On the absolute class-group of Abelian fields II. J. London Math. Soc.30 (1955) 72-80. Zbl0064.27305MR66424
  5. [5] A. Fröhlich: On a method for the determination of class number factors in number fields. Mathematika4 (1957) 113-121. Zbl0081.03503MR98076
  6. [6] M. Gras: Methodes et algorithmes pour le calcul numerique du nombre de classes et des unités des extensions cubiques cycliques de Q. J. Reine Angew. Math.277 (1975), 89-116. Zbl0315.12007MR389845
  7. [7] R. Greenberg: A generalization of Kummer's criterion. Inventiones math.21 (1973) 247-254. Zbl0269.12005MR332730
  8. [8] H. Hasse: Arithmetische Bestimmung von Grundeinheit und Klassenzahl in zyklischen kubischen und biquadratischen Zahlkörpern. Abh. Deutsche Akad. Wiss.1948, Nr. 2 (1950). Zbl0035.30502MR33863
  9. [9] H. Hasse: Über die Klassenzahl abelscher Zahlkörper. Akademie Verlag, 1952. Zbl0046.26003MR49239
  10. [10] K. Iwasawa: A note on class numbers of algebraic number fields. Abh. Math. Sem. Univ. Hamburg20 (1956) 257-258. Zbl0074.03002MR83013
  11. [11] K. Iwasawa: A note on ideal class groups. Nagoya Math. J.27 (1966) 239-247. Zbl0139.28104MR197438
  12. [12] L. Kronecker: Bemerkung über die Klassenanzahl der aus Einheitswurzeln gebildeten komplexen Zahlen. Monatsber. Akad. d. Wiss. Berlin1863 = Werke1, 123-131. 
  13. [13] H. Leopoldt: Zur Geschlechtertheorie in abelschen Zahlkörpern. Math. Nachr.9(1953) 351-362. Zbl0053.35502MR56032
  14. [14] H. Leopoldt: Uber Einheitengruppe und Klassenzahl reeller abelscher Zahlkörper. Abh. Deutsche Akad. Wiss. Berlin Kl. Math. Nat.1953, Nr. 2 (1954). Zbl0059.03501MR67927
  15. [15] H. Leopoldt: Zür Struktur der I-Klassengruppe galoisscher Zahlkörper. J. Reine Angew. Math.199 (1958) 165-174. Zbl0082.25402MR96633
  16. [16] H. Leopoldt: Über Klassenzahlprimteiler reeller abelscher Zahlkörper als Primteiler verallgemeinerter Bernoullischer Zahlen. Abh. Math. Sem. Univ. Hamburg23 (1959) 36-47. Zbl0086.03103MR103184
  17. [17] H. Leopoldt: Über Fermatquotienten von Kreiseinheiten und Klassenzahlformeln modulo p. Rend. Circ. Mat. Palermo (2) 9 (1960) 39-50. Zbl0098.03501MR130868
  18. [18] J. Masley: On the class number of cyclotomic fields. Dissertation, Princeton Univ.1972. 
  19. [19] J. Masley: Solution of the class number two problem for cyclotomic fields. Inventiones math.28 (1975) 243-244. Zbl0288.12005MR369319
  20. [20] J. Masley:Solution of small class number problems for cyclotomic fields. Compositio Math.33 (1976) 179-186. Zbl0348.12011MR450229
  21. [21] J. Masley and H.L. Montgomery: Unique factorization in cyclotomic fields. J. Reine Angew. Math.286/287 (1976) 248-256. Zbl0335.12013MR429824
  22. [22] J. Masley: Odlyzko bounds and class number problems, Algebraic Number fields (edited by A. Fröhlich) Academic Press1977, 465-474. Zbl0365.12007MR447178
  23. [23] A. Odlyzko: Some analytic estimates of class numbers and discriminants. Inventiones Math.29 (1975) 275-286. Zbl0306.12005MR376613
  24. [24] A. Odlyzko: Lower bounds for discriminants of number fields. Acta Arith.29 (1976) 275-297. Zbl0286.12006MR401704
  25. [25] A. Odlyzko: Lower bounds for discriminants of number fields II, Tohoku Math. J.29 (1977) 209-216. Zbl0362.12005MR441918
  26. [26] A. Odlyzko: Unconditional lower bounds for discriminants of number fields (unpublished preprint, November 1976). MR401704
  27. [27] G. Poitou: Minorations de discriminants (d'apres A.M. Odlyzko). Sem Bourbaki, Fev. 1976, no. 479. Zbl0359.12010
  28. [28] P. Ribenboim: Algebraic Numbers. Wiley-Interscience1972, p. 218. Zbl0247.12002MR340212
  29. [29] G. Schrutka v. Rechtenstamm: Tabelle der (relativ-) Klassenzahlen von Kreiskorper. Abh. Deutsche Akad. Wiss. Berlin, 1964 Math Nat. Kl. Nr. 2. Zbl0199.09803MR167646
  30. [30] H.S. Vandiver: The relation of some data obtained from rapid computing machines to the theory of cyclotomic fields, Proc. Nat. Acad. Sci.40 (1954), 474-480. Zbl0056.04102MR62165
  31. [31] J. Martinet: Tours de corps de classes et estimations de discriminants, Inventiones math. (to appear). Zbl0369.12007MR509627

Citations in EuDML Documents

top
  1. Takashi Fukuda, Keiichi Komatsu, Weber’s class number problem in the cyclotomic 2 -extension of , II
  2. Ku-Young Chang, Soun-Hi Kwon, The imaginary abelian number fields with class numbers equal to their genus class numbers
  3. Ken Yamamura, Maximal unramified extensions of imaginary quadratic number fields of small conductors
  4. A. M. Odlyzko, Bounds for discriminants and related estimates for class numbers, regulators and zeros of zeta functions : a survey of recent results

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.