Comparison between the fundamental group scheme of a relative scheme and that of its generic fiber

Marco Antei[1]

  • [1] Laboratoire Paul Painlevé, U.F.R. de Mathématiques Université des Sciences et des Techonlogies de Lille 1 59 655 Villeneuve d’Ascq, France

Journal de Théorie des Nombres de Bordeaux (2010)

  • Volume: 22, Issue: 3, page 537-555
  • ISSN: 1246-7405

Abstract

top
We show that the natural morphism ϕ : π 1 ( X η , x η ) π 1 ( X , x ) η between the fundamental group scheme of the generic fiber X η of a scheme X over a connected Dedekind scheme and the generic fiber of the fundamental group scheme of X is always faithfully flat. As an application we give a necessary and sufficient condition for a finite, dominated pointed G -torsor over X η to be extended over X . We finally provide examples where ϕ : π 1 ( X η , x η ) π 1 ( X , x ) η is an isomorphism.

How to cite

top

Antei, Marco. "Comparison between the fundamental group scheme of a relative scheme and that of its generic fiber." Journal de Théorie des Nombres de Bordeaux 22.3 (2010): 537-555. <http://eudml.org/doc/116419>.

@article{Antei2010,
abstract = {We show that the natural morphism $\varphi :\pi _1(X_\{\eta \},x_\{\eta \}) \rightarrow \pi _1(X,x)_\{\eta \}$ between the fundamental group scheme of the generic fiber $X_\{\eta \}$ of a scheme $X$ over a connected Dedekind scheme and the generic fiber of the fundamental group scheme of $X$ is always faithfully flat. As an application we give a necessary and sufficient condition for a finite, dominated pointed $G$-torsor over $X_\{\eta \}$ to be extended over $X$. We finally provide examples where $\varphi :\pi _1(X_\{\eta \},x_\{\eta \})\rightarrow \pi _1(X,x)_\{\eta \}$ is an isomorphism.},
affiliation = {Laboratoire Paul Painlevé, U.F.R. de Mathématiques Université des Sciences et des Techonlogies de Lille 1 59 655 Villeneuve d’Ascq, France},
author = {Antei, Marco},
journal = {Journal de Théorie des Nombres de Bordeaux},
language = {eng},
number = {3},
pages = {537-555},
publisher = {Université Bordeaux 1},
title = {Comparison between the fundamental group scheme of a relative scheme and that of its generic fiber},
url = {http://eudml.org/doc/116419},
volume = {22},
year = {2010},
}

TY - JOUR
AU - Antei, Marco
TI - Comparison between the fundamental group scheme of a relative scheme and that of its generic fiber
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2010
PB - Université Bordeaux 1
VL - 22
IS - 3
SP - 537
EP - 555
AB - We show that the natural morphism $\varphi :\pi _1(X_{\eta },x_{\eta }) \rightarrow \pi _1(X,x)_{\eta }$ between the fundamental group scheme of the generic fiber $X_{\eta }$ of a scheme $X$ over a connected Dedekind scheme and the generic fiber of the fundamental group scheme of $X$ is always faithfully flat. As an application we give a necessary and sufficient condition for a finite, dominated pointed $G$-torsor over $X_{\eta }$ to be extended over $X$. We finally provide examples where $\varphi :\pi _1(X_{\eta },x_{\eta })\rightarrow \pi _1(X,x)_{\eta }$ is an isomorphism.
LA - eng
UR - http://eudml.org/doc/116419
ER -

References

top
  1. S. Anantharaman, Schémas en groupes, espaces homogènes et espaces algébriques sur une base de dimension 1. Mémoires de la S. M. F. 33 (1973), 5–79. Zbl0286.14001MR335524
  2. J. E. Bertin, Généralités sur les préschémas en groupes. Exposé VI B , Séminaires de Géométrie Algébrique Du Bois Marie. III , (1962/64) 
  3. M. Demazure, P. Gabriel, Groupes algébriques. North-Holland Publ. Co., Amsterdam, 1970. MR302656
  4. P. Gabriel, Construction de préschémas quotient. Exposé V, Séminaires de Géométrie Algébrique Du Bois Marie. III , (1962/64) MR257095
  5. C. Garuti, Barsotti-Tate Groups and p-adic Representations of the Fundamental Group Scheme. Math. Ann. 341 No. 3 (2008), 603–622. Zbl1145.14036MR2399161
  6. C. Gasbarri, Heights of Vector Bundles and the Fundamental Group Scheme of a Curve. Duke Math. J. 117 No.2 (2003), 287–311. Zbl1026.11057MR1971295
  7. A. Grothendieck, Éléments de géométrie algébrique. I. Le langage des schémas. Publications Mathématiques de l’IHÉS, 4 (1960). Zbl0118.36206
  8. A. Grothendieck, Éléments de géométrie algébrique. II. Étude globale élémentaire de quelques classes de morphismes. Publications Mathématiques de l’IHÉS, 8 (1961). Zbl0118.36206
  9. A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. II, Publications Mathématiques de l’IHÉS, 24 (1965). Zbl0135.39701
  10. A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. III, Publications Mathématiques de l’IHÉS, 28 (1966). Zbl0144.19904
  11. H. Matsumura, Commutative Ring Theory. Cambridge University Press, 1980. Zbl0603.13001MR879273
  12. M. V. Nori, On the Representations of the Fundamental Group. Compositio Matematica, Vol. 33, Fasc. 1 (1976), 29–42. Zbl0337.14016MR417179
  13. M. V. Nori, The Fundamental Group-Scheme. Proc. Indian Acad. Sci. (Math. Sci.), Vol. 91, Number 2 (1982), 73–122. Zbl0586.14006MR682517
  14. M. V. Nori, The Fundamental Group-Scheme of an Abelian Variety. Math. Ann. 263 (1983), 263–266. Zbl0497.14018MR704291
  15. M. Raynaud, Schémas en groupes de type ( p , ... , p ) . Bulletin de la Société Mathématique de France 102 (1974), 241–280. Zbl0325.14020MR419467
  16. M. Romagny, Effective Models of Group Schemes. ArXiv:0904.3167v2, (2009). Zbl1271.14069
  17. M. Saidi, Cyclic p-Groups and Semi-Stable Reduction of Curves in Equal Characteristic p &gt; 0 . ArXiv:math/0405529 (2004). 
  18. W. C. Waterhouse, Introduction to Affine Group Schemes. GTM, Springer-Verlag, 1979. Zbl0442.14017MR547117

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.