Comparison between the fundamental group scheme of a relative scheme and that of its generic fiber
Marco Antei[1]
- [1] Laboratoire Paul Painlevé, U.F.R. de Mathématiques Université des Sciences et des Techonlogies de Lille 1 59 655 Villeneuve d’Ascq, France
Journal de Théorie des Nombres de Bordeaux (2010)
- Volume: 22, Issue: 3, page 537-555
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topAntei, Marco. "Comparison between the fundamental group scheme of a relative scheme and that of its generic fiber." Journal de Théorie des Nombres de Bordeaux 22.3 (2010): 537-555. <http://eudml.org/doc/116419>.
@article{Antei2010,
abstract = {We show that the natural morphism $\varphi :\pi _1(X_\{\eta \},x_\{\eta \}) \rightarrow \pi _1(X,x)_\{\eta \}$ between the fundamental group scheme of the generic fiber $X_\{\eta \}$ of a scheme $X$ over a connected Dedekind scheme and the generic fiber of the fundamental group scheme of $X$ is always faithfully flat. As an application we give a necessary and sufficient condition for a finite, dominated pointed $G$-torsor over $X_\{\eta \}$ to be extended over $X$. We finally provide examples where $\varphi :\pi _1(X_\{\eta \},x_\{\eta \})\rightarrow \pi _1(X,x)_\{\eta \}$ is an isomorphism.},
affiliation = {Laboratoire Paul Painlevé, U.F.R. de Mathématiques Université des Sciences et des Techonlogies de Lille 1 59 655 Villeneuve d’Ascq, France},
author = {Antei, Marco},
journal = {Journal de Théorie des Nombres de Bordeaux},
language = {eng},
number = {3},
pages = {537-555},
publisher = {Université Bordeaux 1},
title = {Comparison between the fundamental group scheme of a relative scheme and that of its generic fiber},
url = {http://eudml.org/doc/116419},
volume = {22},
year = {2010},
}
TY - JOUR
AU - Antei, Marco
TI - Comparison between the fundamental group scheme of a relative scheme and that of its generic fiber
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2010
PB - Université Bordeaux 1
VL - 22
IS - 3
SP - 537
EP - 555
AB - We show that the natural morphism $\varphi :\pi _1(X_{\eta },x_{\eta }) \rightarrow \pi _1(X,x)_{\eta }$ between the fundamental group scheme of the generic fiber $X_{\eta }$ of a scheme $X$ over a connected Dedekind scheme and the generic fiber of the fundamental group scheme of $X$ is always faithfully flat. As an application we give a necessary and sufficient condition for a finite, dominated pointed $G$-torsor over $X_{\eta }$ to be extended over $X$. We finally provide examples where $\varphi :\pi _1(X_{\eta },x_{\eta })\rightarrow \pi _1(X,x)_{\eta }$ is an isomorphism.
LA - eng
UR - http://eudml.org/doc/116419
ER -
References
top- S. Anantharaman, Schémas en groupes, espaces homogènes et espaces algébriques sur une base de dimension 1. Mémoires de la S. M. F. 33 (1973), 5–79. Zbl0286.14001MR335524
- J. E. Bertin, Généralités sur les préschémas en groupes. Exposé VI, Séminaires de Géométrie Algébrique Du Bois Marie. III , (1962/64)
- M. Demazure, P. Gabriel, Groupes algébriques. North-Holland Publ. Co., Amsterdam, 1970. MR302656
- P. Gabriel, Construction de préschémas quotient. Exposé V, Séminaires de Géométrie Algébrique Du Bois Marie. III , (1962/64) MR257095
- C. Garuti, Barsotti-Tate Groups and p-adic Representations of the Fundamental Group Scheme. Math. Ann. 341 No. 3 (2008), 603–622. Zbl1145.14036MR2399161
- C. Gasbarri, Heights of Vector Bundles and the Fundamental Group Scheme of a Curve. Duke Math. J. 117 No.2 (2003), 287–311. Zbl1026.11057MR1971295
- A. Grothendieck, Éléments de géométrie algébrique. I. Le langage des schémas. Publications Mathématiques de l’IHÉS, 4 (1960). Zbl0118.36206
- A. Grothendieck, Éléments de géométrie algébrique. II. Étude globale élémentaire de quelques classes de morphismes. Publications Mathématiques de l’IHÉS, 8 (1961). Zbl0118.36206
- A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. II, Publications Mathématiques de l’IHÉS, 24 (1965). Zbl0135.39701
- A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. III, Publications Mathématiques de l’IHÉS, 28 (1966). Zbl0144.19904
- H. Matsumura, Commutative Ring Theory. Cambridge University Press, 1980. Zbl0603.13001MR879273
- M. V. Nori, On the Representations of the Fundamental Group. Compositio Matematica, Vol. 33, Fasc. 1 (1976), 29–42. Zbl0337.14016MR417179
- M. V. Nori, The Fundamental Group-Scheme. Proc. Indian Acad. Sci. (Math. Sci.), Vol. 91, Number 2 (1982), 73–122. Zbl0586.14006MR682517
- M. V. Nori, The Fundamental Group-Scheme of an Abelian Variety. Math. Ann. 263 (1983), 263–266. Zbl0497.14018MR704291
- M. Raynaud, Schémas en groupes de type . Bulletin de la Société Mathématique de France 102 (1974), 241–280. Zbl0325.14020MR419467
- M. Romagny, Effective Models of Group Schemes. ArXiv:0904.3167v2, (2009). Zbl1271.14069
- M. Saidi, Cyclic p-Groups and Semi-Stable Reduction of Curves in Equal Characteristic . ArXiv:math/0405529 (2004).
- W. C. Waterhouse, Introduction to Affine Group Schemes. GTM, Springer-Verlag, 1979. Zbl0442.14017MR547117
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.