Un modèle asymptotique pour les ondes internes de grande amplitude
- [1] Laboratoire de Mathématiques, UMR 8628, Université Paris-Sud et CNRS, 91405 Orsay, France
Séminaire Équations aux dérivées partielles (2009-2010)
- Volume: 2008-2009, page 1-14
Access Full Article
topAbstract
topHow to cite
topReferences
top- B. Alvarez-Samaniego and D. Lannes, Large time existence for water-waves and asymptotics, Inventiones Math. 171 (2008), 485-541. Zbl1131.76012MR2372806
- T.B.Benjamin and T.J.Bridges, Reappraisal of the Kelvin-Helmholtz problem.Part I. Hamiltonian structure, J. Fluid Mech. 333 (1997) 301-325. Zbl0892.76027MR1437021
- J. Bona, D. Lannes, and J.-C. Saut, Asymptotic models for internal waves, J. Math. Pures Appl. 89 (2008) 538-566. Zbl1138.76028MR2424620
- D. Bresch and M. Renardy, Well-posedness of two-layer shallow water flow between two horizontal rigid plates, preprint 2010. Zbl1216.35095MR2773780
- S. Chandrasekhar, Hydrodynamic and hydromagnetic stability, Oxford : Clarendon Press (1961). Zbl0142.44103MR128226
- W. Choi and R. Camassa, Fully nonlinear internal waves in a two-fluid system, J. Fluid Mech. 396 (1999) 1-36. Zbl0973.76019MR1719287
- W. Craig, P. Guyenne and H. Kalisch, Hamiltonian long-wave expansions for free surfaces and interfaces, Comm. Pure. Appl. Math. 58 (2005) 1587-1641. Zbl1151.76385MR2177163
- W. Craig, C. Sulem, and P.-L. Sulem, Nonlinear modulation of gravity waves : a rigorous approach, Nonlinearity 5 (1992), 497-522. Zbl0742.76012MR1158383
- Cung The Anh, Influence of surface tension and bottom topography on internal waves, M3AS, 19, 12 (2009), 2145-2175. Zbl1248.76030MR2599657
- V. Duchêne, Asymptotic shallow water models for internal waves in a two-fluid system with a free surface, arXiv : 0906.0839 (June 2009). Zbl1254.76045MR2729438
- P. Guyenne, D. Lannes and J.-C. Saut, On the Cauchy problem for a nonlocal system modelling large amplitudes internal waves, Nonlinearity 23 (2010), 237-275. Zbl1191.35166MR2578478
- T.Y. Hou and P. Zhang, Growth rates for the linearized motion of 3-D fluid interfaces with surface tension far from equilibrium, Asian J. Math.. 2 (1998) 263-288. Zbl0926.76046MR1639548
- T. Iguchi, N. Tanaka, and A. Tani, On the two-phase free boundary problem for two-dimensional water waves, Math. Ann. 309 (1997) 199-223. Zbl0897.76017MR1474190
- D. Lannes, Sharp estimates for pseudo-differential operators with symbols of limited smoothness and commutators, J. Funct. Anal. 232 (2006) 495-539. Zbl1099.35191MR2200744
- D. Lannes, A stability criterion for two-fluid interfaces and applications, arXiv. 1005.4565v1 (May 2010). Zbl1278.35194
- D. Lannes and J.-C. Saut, en préparation.
- P. Milewski, E. Tabak, C. Turner, R. Rosales, and F. Menzaque, Nonlinear stability of two-layer flows, Commun. Math. Sci. 2 (2004) 427-442. Zbl1084.76031MR2118852
- K. Ohi and T. Iguchi, A two-phase problem for capillary-gravity waves and the Benjamin-Ono equation, Disc. Cont. Dyn. Systems A, 23, 4 (2009), 1205-1240. Zbl1155.35416MR2461848
- M. E. Taylor, Partial differential equations. III. Nonlinear equations, Corrected reprint of the 1996 original. Applied Mathematical Sciences, 117. Springer-Verlag, New York, 1997. Zbl0869.35004MR1477408
- V.E.Zakharov, Stability of periodic waves of finite amplitude on the surface of a deep fluid, J. Appl. Mech. Tech. Phys.2 (1968) 190-194.