Two blow-up regimes for L 2 supercritical nonlinear Schrödinger equations

Frank Merle[1]; Pierre Raphaël[2]; Jérémie Szeftel[3]

  • [1] Université de Cergy Pontoise and IHES France
  • [2] IMT Université Paul Sabatier Toulouse France
  • [3] DMA Ecole Normale Supérieure France

Séminaire Équations aux dérivées partielles (2009-2010)

  • Volume: 2009-2010, page 1-11

Abstract

top
We consider the focusing nonlinear Schrödinger equations i t u + Δ u + u | u | p - 1 = 0 . We prove the existence of two finite time blow up dynamics in the supercritical case and provide for each a qualitative description of the singularity formation near the blow up time.

How to cite

top

Merle, Frank, Raphaël, Pierre, and Szeftel, Jérémie. "Two blow-up regimes for $L^2$ supercritical nonlinear Schrödinger equations." Séminaire Équations aux dérivées partielles 2009-2010 (2009-2010): 1-11. <http://eudml.org/doc/116445>.

@article{Merle2009-2010,
abstract = {We consider the focusing nonlinear Schrödinger equations $i\partial _t u+\Delta u +u|u|^\{p-1\}=0$. We prove the existence of two finite time blow up dynamics in the supercritical case and provide for each a qualitative description of the singularity formation near the blow up time.},
affiliation = {Université de Cergy Pontoise and IHES France; IMT Université Paul Sabatier Toulouse France; DMA Ecole Normale Supérieure France},
author = {Merle, Frank, Raphaël, Pierre, Szeftel, Jérémie},
journal = {Séminaire Équations aux dérivées partielles},
keywords = {nonlinear Schrödinger equations; self-similar blow-up; log-log blow-up},
language = {eng},
pages = {1-11},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Two blow-up regimes for $L^2$ supercritical nonlinear Schrödinger equations},
url = {http://eudml.org/doc/116445},
volume = {2009-2010},
year = {2009-2010},
}

TY - JOUR
AU - Merle, Frank
AU - Raphaël, Pierre
AU - Szeftel, Jérémie
TI - Two blow-up regimes for $L^2$ supercritical nonlinear Schrödinger equations
JO - Séminaire Équations aux dérivées partielles
PY - 2009-2010
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2009-2010
SP - 1
EP - 11
AB - We consider the focusing nonlinear Schrödinger equations $i\partial _t u+\Delta u +u|u|^{p-1}=0$. We prove the existence of two finite time blow up dynamics in the supercritical case and provide for each a qualitative description of the singularity formation near the blow up time.
LA - eng
KW - nonlinear Schrödinger equations; self-similar blow-up; log-log blow-up
UR - http://eudml.org/doc/116445
ER -

References

top
  1. Bourgain, J.; Wang, W., Construction of blow-up solutions for the nonlinear Schrödinger with critical nonlinearity. Ann, Scuola Norm. Sup. Pisa Cl. Sci. (4) 25 (1997), no 1-2, 197-215. Zbl1043.35137MR1655515
  2. Fibich, G.; Gavish, N.; Wang, X.P., Singular ring solutions of critical and supercritical nonlinear Schrödinger equations, Physica D: Nonlinear Phenomena, 231 (2007), no. 1, 55–86. Zbl1118.35043MR2370365
  3. Gidas, B.; Ni, W.M.; Nirenberg, L., Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (1979), 209—243. Zbl0425.35020MR544879
  4. Ginibre, J.; Velo, G., On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case, J. Funct. Anal. 32 (1979), no. 1, 1–32. Zbl0396.35028MR533218
  5. Kopell, N.; Landman, M., Spatial structure of the focusing singularity of the nonlinear Schrödinger equation: a geometrical analysis, SIAM J. Appl. Math. 55 (1995), no. 5, 1297–1323. Zbl0836.34041MR1349311
  6. Kwong, M. K., Uniqueness of positive solutions of Δ u - u + u p = 0 in R n . Arch. Rational Mech. Anal. 105 (1989), no. 3, 243–266. Zbl0676.35032MR969899
  7. Merle, F.; Raphaël, P., Blow up dynamic and upper bound on the blow up rate for critical nonlinear Schrödinger equation, Ann. Math. 161 (2005), no. 1, 157–222. Zbl1185.35263MR2150386
  8. Merle, F.; Raphaël, P., Sharp upper bound on the blow up rate for critical nonlinear Schrödinger equation, Geom. Funct. Anal. 13 (2003), 591-642. Zbl1061.35135MR1995801
  9. Merle, F.; Raphaël, P., On universality of blow up profile for L 2 critical nonlinear Schrödinger equation, Invent. Math. 156, 565-672 (2004). Zbl1067.35110MR2061329
  10. Merle, F.; Raphaël, P., Sharp lower bound on the blow up rate for critical nonlinear Schrödinger equation, J. Amer. Math. Soc. 19 (2006), no. 1, 37–90. Zbl1075.35077MR2169042
  11. Merle, F.; Raphaël, P., Profiles and quantization of the blow up mass for critical nonlinear Schrödinger equation, Comm. Math. Phys. 253 (2005), no. 3, 675–704. Zbl1062.35137MR2116733
  12. Merle, F.; Raphaël, P.; Szeftel, J., Stable self similar blow up dynamics for slightly L 2 supercritical NLS equations, submitted. Zbl1204.35153
  13. Perelman, G., On the blow up phenomenon for the critical nonlinear Schrödinger equation in 1D, Ann. Henri. Poincaré, 2 (2001), 605-673. Zbl1007.35087MR1826598
  14. Raphaël, P., Stability of the log-log bound for blow up solutions to the critical nonlinear Schrödinger equation, Math. Ann. 331 (2005), 577–609. Zbl1082.35143MR2122541
  15. Raphaël, P., Existence and stability of a solution blowing up on a sphere for a L 2 supercritical nonlinear Schrödinger equation, Duke Math. J. 134 (2006), no. 2, 199–258. Zbl1117.35077MR2248831
  16. Raphaël, P., Szeftel, J., Standing ring blow up solutions to the quintic NLS in dimension N , to appear in Comm. Math. Phys. Zbl1184.35295MR2525647
  17. Sulem, C.; Sulem, P.L., The nonlinear Schrödinger equation. Self-focusing and wave collapse. Applied Mathematical Sciences, 139. Springer-Verlag, New York, 1999. Zbl0928.35157MR1696311
  18. Weinstein, M.I., Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys. 87 (1983), 567—576. Zbl0527.35023MR691044
  19. Zakharov, V.E.; Shabat, A.B., Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in non-linear media, Sov. Phys. JETP 34 (1972), 62–69. MR406174

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.