Two blow-up regimes for supercritical nonlinear Schrödinger equations
Frank Merle[1]; Pierre Raphaël[2]; Jérémie Szeftel[3]
- [1] Université de Cergy Pontoise and IHES France
- [2] IMT Université Paul Sabatier Toulouse France
- [3] DMA Ecole Normale Supérieure France
Séminaire Équations aux dérivées partielles (2009-2010)
- Volume: 2009-2010, page 1-11
Access Full Article
topAbstract
topHow to cite
topMerle, Frank, Raphaël, Pierre, and Szeftel, Jérémie. "Two blow-up regimes for $L^2$ supercritical nonlinear Schrödinger equations." Séminaire Équations aux dérivées partielles 2009-2010 (2009-2010): 1-11. <http://eudml.org/doc/116445>.
@article{Merle2009-2010,
abstract = {We consider the focusing nonlinear Schrödinger equations $i\partial _t u+\Delta u +u|u|^\{p-1\}=0$. We prove the existence of two finite time blow up dynamics in the supercritical case and provide for each a qualitative description of the singularity formation near the blow up time.},
affiliation = {Université de Cergy Pontoise and IHES France; IMT Université Paul Sabatier Toulouse France; DMA Ecole Normale Supérieure France},
author = {Merle, Frank, Raphaël, Pierre, Szeftel, Jérémie},
journal = {Séminaire Équations aux dérivées partielles},
keywords = {nonlinear Schrödinger equations; self-similar blow-up; log-log blow-up},
language = {eng},
pages = {1-11},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Two blow-up regimes for $L^2$ supercritical nonlinear Schrödinger equations},
url = {http://eudml.org/doc/116445},
volume = {2009-2010},
year = {2009-2010},
}
TY - JOUR
AU - Merle, Frank
AU - Raphaël, Pierre
AU - Szeftel, Jérémie
TI - Two blow-up regimes for $L^2$ supercritical nonlinear Schrödinger equations
JO - Séminaire Équations aux dérivées partielles
PY - 2009-2010
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2009-2010
SP - 1
EP - 11
AB - We consider the focusing nonlinear Schrödinger equations $i\partial _t u+\Delta u +u|u|^{p-1}=0$. We prove the existence of two finite time blow up dynamics in the supercritical case and provide for each a qualitative description of the singularity formation near the blow up time.
LA - eng
KW - nonlinear Schrödinger equations; self-similar blow-up; log-log blow-up
UR - http://eudml.org/doc/116445
ER -
References
top- Bourgain, J.; Wang, W., Construction of blow-up solutions for the nonlinear Schrödinger with critical nonlinearity. Ann, Scuola Norm. Sup. Pisa Cl. Sci. (4) 25 (1997), no 1-2, 197-215. Zbl1043.35137MR1655515
- Fibich, G.; Gavish, N.; Wang, X.P., Singular ring solutions of critical and supercritical nonlinear Schrödinger equations, Physica D: Nonlinear Phenomena, 231 (2007), no. 1, 55–86. Zbl1118.35043MR2370365
- Gidas, B.; Ni, W.M.; Nirenberg, L., Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (1979), 209—243. Zbl0425.35020MR544879
- Ginibre, J.; Velo, G., On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case, J. Funct. Anal. 32 (1979), no. 1, 1–32. Zbl0396.35028MR533218
- Kopell, N.; Landman, M., Spatial structure of the focusing singularity of the nonlinear Schrödinger equation: a geometrical analysis, SIAM J. Appl. Math. 55 (1995), no. 5, 1297–1323. Zbl0836.34041MR1349311
- Kwong, M. K., Uniqueness of positive solutions of in . Arch. Rational Mech. Anal. 105 (1989), no. 3, 243–266. Zbl0676.35032MR969899
- Merle, F.; Raphaël, P., Blow up dynamic and upper bound on the blow up rate for critical nonlinear Schrödinger equation, Ann. Math. 161 (2005), no. 1, 157–222. Zbl1185.35263MR2150386
- Merle, F.; Raphaël, P., Sharp upper bound on the blow up rate for critical nonlinear Schrödinger equation, Geom. Funct. Anal. 13 (2003), 591-642. Zbl1061.35135MR1995801
- Merle, F.; Raphaël, P., On universality of blow up profile for critical nonlinear Schrödinger equation, Invent. Math. 156, 565-672 (2004). Zbl1067.35110MR2061329
- Merle, F.; Raphaël, P., Sharp lower bound on the blow up rate for critical nonlinear Schrödinger equation, J. Amer. Math. Soc. 19 (2006), no. 1, 37–90. Zbl1075.35077MR2169042
- Merle, F.; Raphaël, P., Profiles and quantization of the blow up mass for critical nonlinear Schrödinger equation, Comm. Math. Phys. 253 (2005), no. 3, 675–704. Zbl1062.35137MR2116733
- Merle, F.; Raphaël, P.; Szeftel, J., Stable self similar blow up dynamics for slightly supercritical NLS equations, submitted. Zbl1204.35153
- Perelman, G., On the blow up phenomenon for the critical nonlinear Schrödinger equation in 1D, Ann. Henri. Poincaré, 2 (2001), 605-673. Zbl1007.35087MR1826598
- Raphaël, P., Stability of the log-log bound for blow up solutions to the critical nonlinear Schrödinger equation, Math. Ann. 331 (2005), 577–609. Zbl1082.35143MR2122541
- Raphaël, P., Existence and stability of a solution blowing up on a sphere for a supercritical nonlinear Schrödinger equation, Duke Math. J. 134 (2006), no. 2, 199–258. Zbl1117.35077MR2248831
- Raphaël, P., Szeftel, J., Standing ring blow up solutions to the quintic NLS in dimension , to appear in Comm. Math. Phys. Zbl1184.35295MR2525647
- Sulem, C.; Sulem, P.L., The nonlinear Schrödinger equation. Self-focusing and wave collapse. Applied Mathematical Sciences, 139. Springer-Verlag, New York, 1999. Zbl0928.35157MR1696311
- Weinstein, M.I., Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys. 87 (1983), 567—576. Zbl0527.35023MR691044
- Zakharov, V.E.; Shabat, A.B., Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in non-linear media, Sov. Phys. JETP 34 (1972), 62–69. MR406174
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.