Une approche pédestre de quelques aspects locaux des variétés de Cauchy-Riemann

Marc Herzlich[1]

  • [1] Université Montpellier 2 Institut de Mathématiques et de Modélisation UMR 5149 CNRS Place Eugène Bataillon Case courrier 51 34095 Montpellier cedex 5 (France)

Séminaire de théorie spectrale et géométrie (2008-2009)

  • Volume: 27, page 131-141
  • ISSN: 1624-5458

How to cite

top

Herzlich, Marc. "Une approche pédestre de quelques aspects locaux des variétés de Cauchy-Riemann." Séminaire de théorie spectrale et géométrie 27 (2008-2009): 131-141. <http://eudml.org/doc/116454>.

@article{Herzlich2008-2009,
affiliation = {Université Montpellier 2 Institut de Mathématiques et de Modélisation UMR 5149 CNRS Place Eugène Bataillon Case courrier 51 34095 Montpellier cedex 5 (France)},
author = {Herzlich, Marc},
journal = {Séminaire de théorie spectrale et géométrie},
keywords = {géométrie CR; fibré de Cartan; fibré des tracteurs; connexion de Cartan; CR manifold; canonical fiber bundle; curvature; connection},
language = {fre},
pages = {131-141},
publisher = {Institut Fourier},
title = {Une approche pédestre de quelques aspects locaux des variétés de Cauchy-Riemann},
url = {http://eudml.org/doc/116454},
volume = {27},
year = {2008-2009},
}

TY - JOUR
AU - Herzlich, Marc
TI - Une approche pédestre de quelques aspects locaux des variétés de Cauchy-Riemann
JO - Séminaire de théorie spectrale et géométrie
PY - 2008-2009
PB - Institut Fourier
VL - 27
SP - 131
EP - 141
LA - fre
KW - géométrie CR; fibré de Cartan; fibré des tracteurs; connexion de Cartan; CR manifold; canonical fiber bundle; curvature; connection
UR - http://eudml.org/doc/116454
ER -

References

top
  1. David M. J. Calderbank, Tammo Diemer, and Vladimír Souček, Ricci-corrected derivatives and invariant differential operators, Differential Geom. Appl. 23 (2005), 149–175. Zbl1082.58037MR2158042
  2. Andreas Čap and A. Rod Gover, CR-tractors and the Fefferman space, Indiana Univ. Math. J. 57 (2008), 2519–2570. Zbl1162.32019MR2463976
  3. Andreas Čap and Hermann Schichl, Parabolic geometries and canonical Cartan connections, Hokkaido Math. J. 29 (2000), 453–505. Zbl0996.53023MR1795487
  4. Élie Cartan, Sur la géométrie pseudo-conforme des hypersurfaces de l’espace de deux variables complexes, II, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (2) 1 (1932), 333–354. Zbl0005.37401MR1556687
  5. Elie Cartan, Sur la géométrie pseudo-conforme des hypersurfaces de l’espace de deux variables complexes, Ann. Mat. Pura Appl. 11 (1933), 17–90. Zbl0005.37304MR1553196
  6. Shiing-Shen Chern and Jürgen K. Moser, Real hypersurfaces in complex manifolds, Acta Math. 133 (1974), 219–271, Erratum, Acta Math. 150 (1983), 3–4. Zbl0302.32015
  7. Liana David, Weyl connections and curvature properties of CR manifolds, Ann. Global Anal. Geom. 26 (2004), 59–72. Zbl1054.32022MR2054577
  8. Paul Gauduchon, Connexion canonique et structures de Weyl en géométrie conforme, 1990, non publié. 
  9. A. Rod Gover and C. Robin Graham, CR invariant powers of the sub-Laplacian, J. Reine Angew. Math. 583 (2005), 1–27. Zbl1076.53048MR2146851
  10. Marc Herzlich, The canonical Cartan bundle and connection in CR geometry, Math. Proc. Cambridge Philos. Soc. 146 (2009), 415–434. Zbl1167.53064MR2475975
  11. Kengo Hirachi, Scalar pseudo-Hermitian invariants and the Szegő kernel on three-dimensional CR manifolds, Complex geometry (Osaka, 1990), Lecture Notes in Pure and Appl. Math., vol. 143, Dekker, New York, 1993, pp. 67–76. Zbl0805.32014MR1201602
  12. Howard Jacobowitz, The canonical bundle and realizable CR hypersurfaces, Pacific J. Math. 127 (1987), 91–101. Zbl0583.32050MR876018
  13. David Jerison and John M. Lee, Intrinsic CR normal coordinates and the CR Yamabe problem, J. Differential Geom. 29 (1989), 303–343. Zbl0671.32016MR982177
  14. Shoshichi Kobayashi, Transformation groups in differential geometry, Classics in Mathematics, Springer-Verlag, Berlin, 1995, reprint of the 1972 edition. Zbl0829.53023MR1336823
  15. John M. Lee, Pseudo-Einstein structures on CR manifolds, Amer. J. Math. 110 (1988), 157–178. Zbl0638.32019MR926742
  16. John M. Lee and Thomas H. Parker, The Yamabe problem, Bull. Amer. Math. Soc. 17 (1987), 37–91. Zbl0633.53062MR888880
  17. Robert W. Sharpe, Differential geometry, Graduate Texts in Mathematics, vol. 166, Springer-Verlag, New York, 1997. Zbl0876.53001MR1453120
  18. Noboru Tanaka, A differential geometric study on strongly pseudo-convex manifolds, Kinokuniya Book-Store Co. Ltd., Tokyo, 1975, Lectures in Mathematics, Department of Mathematics, Kyoto University, No. 9. Zbl0331.53025MR399517
  19. Sidney M. Webster, Pseudo-Hermitian structures on a real hypersurface, J. Differential Geom. 13 (1978), 25–41. Zbl0379.53016MR520599

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.