Une approche pédestre de quelques aspects locaux des variétés de Cauchy-Riemann
- [1] Université Montpellier 2 Institut de Mathématiques et de Modélisation UMR 5149 CNRS Place Eugène Bataillon Case courrier 51 34095 Montpellier cedex 5 (France)
Séminaire de théorie spectrale et géométrie (2008-2009)
- Volume: 27, page 131-141
- ISSN: 1624-5458
Access Full Article
topHow to cite
topHerzlich, Marc. "Une approche pédestre de quelques aspects locaux des variétés de Cauchy-Riemann." Séminaire de théorie spectrale et géométrie 27 (2008-2009): 131-141. <http://eudml.org/doc/116454>.
@article{Herzlich2008-2009,
affiliation = {Université Montpellier 2 Institut de Mathématiques et de Modélisation UMR 5149 CNRS Place Eugène Bataillon Case courrier 51 34095 Montpellier cedex 5 (France)},
author = {Herzlich, Marc},
journal = {Séminaire de théorie spectrale et géométrie},
keywords = {géométrie CR; fibré de Cartan; fibré des tracteurs; connexion de Cartan; CR manifold; canonical fiber bundle; curvature; connection},
language = {fre},
pages = {131-141},
publisher = {Institut Fourier},
title = {Une approche pédestre de quelques aspects locaux des variétés de Cauchy-Riemann},
url = {http://eudml.org/doc/116454},
volume = {27},
year = {2008-2009},
}
TY - JOUR
AU - Herzlich, Marc
TI - Une approche pédestre de quelques aspects locaux des variétés de Cauchy-Riemann
JO - Séminaire de théorie spectrale et géométrie
PY - 2008-2009
PB - Institut Fourier
VL - 27
SP - 131
EP - 141
LA - fre
KW - géométrie CR; fibré de Cartan; fibré des tracteurs; connexion de Cartan; CR manifold; canonical fiber bundle; curvature; connection
UR - http://eudml.org/doc/116454
ER -
References
top- David M. J. Calderbank, Tammo Diemer, and Vladimír Souček, Ricci-corrected derivatives and invariant differential operators, Differential Geom. Appl. 23 (2005), 149–175. Zbl1082.58037MR2158042
- Andreas Čap and A. Rod Gover, CR-tractors and the Fefferman space, Indiana Univ. Math. J. 57 (2008), 2519–2570. Zbl1162.32019MR2463976
- Andreas Čap and Hermann Schichl, Parabolic geometries and canonical Cartan connections, Hokkaido Math. J. 29 (2000), 453–505. Zbl0996.53023MR1795487
- Élie Cartan, Sur la géométrie pseudo-conforme des hypersurfaces de l’espace de deux variables complexes, II, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (2) 1 (1932), 333–354. Zbl0005.37401MR1556687
- Elie Cartan, Sur la géométrie pseudo-conforme des hypersurfaces de l’espace de deux variables complexes, Ann. Mat. Pura Appl. 11 (1933), 17–90. Zbl0005.37304MR1553196
- Shiing-Shen Chern and Jürgen K. Moser, Real hypersurfaces in complex manifolds, Acta Math. 133 (1974), 219–271, Erratum, Acta Math. 150 (1983), 3–4. Zbl0302.32015
- Liana David, Weyl connections and curvature properties of CR manifolds, Ann. Global Anal. Geom. 26 (2004), 59–72. Zbl1054.32022MR2054577
- Paul Gauduchon, Connexion canonique et structures de Weyl en géométrie conforme, 1990, non publié.
- A. Rod Gover and C. Robin Graham, CR invariant powers of the sub-Laplacian, J. Reine Angew. Math. 583 (2005), 1–27. Zbl1076.53048MR2146851
- Marc Herzlich, The canonical Cartan bundle and connection in CR geometry, Math. Proc. Cambridge Philos. Soc. 146 (2009), 415–434. Zbl1167.53064MR2475975
- Kengo Hirachi, Scalar pseudo-Hermitian invariants and the Szegő kernel on three-dimensional CR manifolds, Complex geometry (Osaka, 1990), Lecture Notes in Pure and Appl. Math., vol. 143, Dekker, New York, 1993, pp. 67–76. Zbl0805.32014MR1201602
- Howard Jacobowitz, The canonical bundle and realizable CR hypersurfaces, Pacific J. Math. 127 (1987), 91–101. Zbl0583.32050MR876018
- David Jerison and John M. Lee, Intrinsic CR normal coordinates and the CR Yamabe problem, J. Differential Geom. 29 (1989), 303–343. Zbl0671.32016MR982177
- Shoshichi Kobayashi, Transformation groups in differential geometry, Classics in Mathematics, Springer-Verlag, Berlin, 1995, reprint of the 1972 edition. Zbl0829.53023MR1336823
- John M. Lee, Pseudo-Einstein structures on CR manifolds, Amer. J. Math. 110 (1988), 157–178. Zbl0638.32019MR926742
- John M. Lee and Thomas H. Parker, The Yamabe problem, Bull. Amer. Math. Soc. 17 (1987), 37–91. Zbl0633.53062MR888880
- Robert W. Sharpe, Differential geometry, Graduate Texts in Mathematics, vol. 166, Springer-Verlag, New York, 1997. Zbl0876.53001MR1453120
- Noboru Tanaka, A differential geometric study on strongly pseudo-convex manifolds, Kinokuniya Book-Store Co. Ltd., Tokyo, 1975, Lectures in Mathematics, Department of Mathematics, Kyoto University, No. 9. Zbl0331.53025MR399517
- Sidney M. Webster, Pseudo-Hermitian structures on a real hypersurface, J. Differential Geom. 13 (1978), 25–41. Zbl0379.53016MR520599
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.