Géométries modèles de dimension trois

Yves de Cornulier[1]

  • [1] IRMAR Campus de Beaulieu 35042 Rennes cedex (France)

Séminaire de théorie spectrale et géométrie (2008-2009)

  • Volume: 27, page 17-43
  • ISSN: 1624-5458

Abstract

top
In this expository article, we give a detailed proof of the classification by Thurston of the eight model geometries in dimension three.

How to cite

top

de Cornulier, Yves. "Géométries modèles de dimension trois." Séminaire de théorie spectrale et géométrie 27 (2008-2009): 17-43. <http://eudml.org/doc/116456>.

@article{deCornulier2008-2009,
abstract = {On expose une preuve détaillée de la classification par Thurston des huit géométries modèles de dimension trois.},
affiliation = {IRMAR Campus de Beaulieu 35042 Rennes cedex (France)},
author = {de Cornulier, Yves},
journal = {Séminaire de théorie spectrale et géométrie},
keywords = {model geometry; Thurston geometry; geometrization},
language = {fre},
pages = {17-43},
publisher = {Institut Fourier},
title = {Géométries modèles de dimension trois},
url = {http://eudml.org/doc/116456},
volume = {27},
year = {2008-2009},
}

TY - JOUR
AU - de Cornulier, Yves
TI - Géométries modèles de dimension trois
JO - Séminaire de théorie spectrale et géométrie
PY - 2008-2009
PB - Institut Fourier
VL - 27
SP - 17
EP - 43
AB - On expose une preuve détaillée de la classification par Thurston des huit géométries modèles de dimension trois.
LA - fre
KW - model geometry; Thurston geometry; geometrization
UR - http://eudml.org/doc/116456
ER -

References

top
  1. L. Bessières, G. Besson, M. Boileau, S. Maillot, J. Porti, Geometrisation of 3-manifolds Zbl1244.57003
  2. Laurent Bessières, Conjecture de Poincaré : la preuve de R. Hamilton et G. Perelman, Gaz. Math. (2005), 7-35 Zbl1129.53045MR2191421
  3. Armand Borel, Compact Clifford-Klein forms of symmetric spaces, Topology 2 (1963), 111-122 Zbl0116.38603MR146301
  4. Bruce Kleiner, John Lott, Notes on Perelman’s papers, Geom. Topol. 12 (2008), 2587-2855 Zbl1204.53033MR2460872
  5. John W. Morgan, Recent progress on the Poincaré conjecture and the classification of 3-manifolds, Bull. Amer. Math. Soc. (N.S.) 42 (2005), 57-78 (electronic) Zbl1100.57016MR2115067
  6. G. D. Mostow, Self-adjoint groups, Ann. of Math. (2) 62 (1955), 44-55 Zbl0065.01404MR69830
  7. Grigori Perelman, The entropy formula for the Ricci flow and its geometric applications, (2002) Zbl1130.53001
  8. Grigori Perelman, Finite extinction time for the solutions to the Ricci flow on certain three-manifolds, (2003) Zbl1130.53003
  9. Grigori Perelman, Ricci flow with surgery on three-manifolds, (2003) Zbl1130.53002
  10. Peter Scott, The Geometries of 3-Manifolds, Bull. London Math. Soc. 15 (1983), 401-487 Zbl0561.57001MR705527
  11. William P. Thurston, The Geometry and Topology of Three-Manifolds, (1980) 
  12. William P. Thurston, Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. (N.S.) 6 (1982), 357-381 Zbl0496.57005MR648524
  13. William P. Thurston, Three-dimensional geometry and topology. Vol. 1, 35 (1997), Princeton University Press, Princeton, NJ Zbl0873.57001MR1435975

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.