Géométries modèles de dimension trois
- [1] IRMAR Campus de Beaulieu 35042 Rennes cedex (France)
Séminaire de théorie spectrale et géométrie (2008-2009)
- Volume: 27, page 17-43
- ISSN: 1624-5458
Access Full Article
topAbstract
topHow to cite
topde Cornulier, Yves. "Géométries modèles de dimension trois." Séminaire de théorie spectrale et géométrie 27 (2008-2009): 17-43. <http://eudml.org/doc/116456>.
@article{deCornulier2008-2009,
abstract = {On expose une preuve détaillée de la classification par Thurston des huit géométries modèles de dimension trois.},
affiliation = {IRMAR Campus de Beaulieu 35042 Rennes cedex (France)},
author = {de Cornulier, Yves},
journal = {Séminaire de théorie spectrale et géométrie},
keywords = {model geometry; Thurston geometry; geometrization},
language = {fre},
pages = {17-43},
publisher = {Institut Fourier},
title = {Géométries modèles de dimension trois},
url = {http://eudml.org/doc/116456},
volume = {27},
year = {2008-2009},
}
TY - JOUR
AU - de Cornulier, Yves
TI - Géométries modèles de dimension trois
JO - Séminaire de théorie spectrale et géométrie
PY - 2008-2009
PB - Institut Fourier
VL - 27
SP - 17
EP - 43
AB - On expose une preuve détaillée de la classification par Thurston des huit géométries modèles de dimension trois.
LA - fre
KW - model geometry; Thurston geometry; geometrization
UR - http://eudml.org/doc/116456
ER -
References
top- L. Bessières, G. Besson, M. Boileau, S. Maillot, J. Porti, Geometrisation of 3-manifolds Zbl1244.57003
- Laurent Bessières, Conjecture de Poincaré : la preuve de R. Hamilton et G. Perelman, Gaz. Math. (2005), 7-35 Zbl1129.53045MR2191421
- Armand Borel, Compact Clifford-Klein forms of symmetric spaces, Topology 2 (1963), 111-122 Zbl0116.38603MR146301
- Bruce Kleiner, John Lott, Notes on Perelman’s papers, Geom. Topol. 12 (2008), 2587-2855 Zbl1204.53033MR2460872
- John W. Morgan, Recent progress on the Poincaré conjecture and the classification of 3-manifolds, Bull. Amer. Math. Soc. (N.S.) 42 (2005), 57-78 (electronic) Zbl1100.57016MR2115067
- G. D. Mostow, Self-adjoint groups, Ann. of Math. (2) 62 (1955), 44-55 Zbl0065.01404MR69830
- Grigori Perelman, The entropy formula for the Ricci flow and its geometric applications, (2002) Zbl1130.53001
- Grigori Perelman, Finite extinction time for the solutions to the Ricci flow on certain three-manifolds, (2003) Zbl1130.53003
- Grigori Perelman, Ricci flow with surgery on three-manifolds, (2003) Zbl1130.53002
- Peter Scott, The Geometries of 3-Manifolds, Bull. London Math. Soc. 15 (1983), 401-487 Zbl0561.57001MR705527
- William P. Thurston, The Geometry and Topology of Three-Manifolds, (1980)
- William P. Thurston, Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. (N.S.) 6 (1982), 357-381 Zbl0496.57005MR648524
- William P. Thurston, Three-dimensional geometry and topology. Vol. 1, 35 (1997), Princeton University Press, Princeton, NJ Zbl0873.57001MR1435975
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.