Some common fixed point theorems in normed linear spaces

Alfred Olufemi Bosede

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2010)

  • Volume: 49, Issue: 1, page 17-24
  • ISSN: 0231-9721

Abstract

top
In this paper, we establish some generalizations to approximate common fixed points for selfmappings in a normed linear space using the modified Ishikawa iteration process with errors in the sense of Liu [10] and Rafiq [14]. We use a more general contractive condition than those of Rafiq [14] to establish our results. Our results, therefore, not only improve a multitude of common fixed point results in literature but also generalize some of the results of Berinde [3], Rhoades [15] and recent results of Rafiq [14].

How to cite

top

Bosede, Alfred Olufemi. "Some common fixed point theorems in normed linear spaces." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 49.1 (2010): 17-24. <http://eudml.org/doc/116473>.

@article{Bosede2010,
abstract = {In this paper, we establish some generalizations to approximate common fixed points for selfmappings in a normed linear space using the modified Ishikawa iteration process with errors in the sense of Liu [10] and Rafiq [14]. We use a more general contractive condition than those of Rafiq [14] to establish our results. Our results, therefore, not only improve a multitude of common fixed point results in literature but also generalize some of the results of Berinde [3], Rhoades [15] and recent results of Rafiq [14].},
author = {Bosede, Alfred Olufemi},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {Common fixed point; contractive condition; Mann and Ishikawa iterations; common fixed point; contractive condition; Mann iteration; Ishikawa iteration},
language = {eng},
number = {1},
pages = {17-24},
publisher = {Palacký University Olomouc},
title = {Some common fixed point theorems in normed linear spaces},
url = {http://eudml.org/doc/116473},
volume = {49},
year = {2010},
}

TY - JOUR
AU - Bosede, Alfred Olufemi
TI - Some common fixed point theorems in normed linear spaces
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2010
PB - Palacký University Olomouc
VL - 49
IS - 1
SP - 17
EP - 24
AB - In this paper, we establish some generalizations to approximate common fixed points for selfmappings in a normed linear space using the modified Ishikawa iteration process with errors in the sense of Liu [10] and Rafiq [14]. We use a more general contractive condition than those of Rafiq [14] to establish our results. Our results, therefore, not only improve a multitude of common fixed point results in literature but also generalize some of the results of Berinde [3], Rhoades [15] and recent results of Rafiq [14].
LA - eng
KW - Common fixed point; contractive condition; Mann and Ishikawa iterations; common fixed point; contractive condition; Mann iteration; Ishikawa iteration
UR - http://eudml.org/doc/116473
ER -

References

top
  1. Berinde, V., A priori and a posteriori error estimates for a class of ϕ -contractions, Bulletins for Applied and Computing Math. (1999), 183–192. (1999) 
  2. Berinde, V., Iterative Approximation of Fixed Points, Editura Efemeride, Baia Mare, 2002. (2002) Zbl1036.47037MR1995230
  3. Berinde, V., On the convergence of the Ishikawa iteration in the class of quasi-contractive operators, Acta Math. Univ. Comenianae 73, 1 (2004), 119–126. (2004) Zbl1100.47054MR2076050
  4. Chatterjea, S. K., Fixed point theorems, C. R. Acad. Bulgare Sci. 25 (1972), 727–730. (1972) Zbl0274.54033MR0324493
  5. Das, G., Debata, J. P., Fixed points of Quasi-nonexpansive mappings, Indian J. Pure and Appl. Math. 17 (1986), 1263–1269. (1986) MR0868962
  6. Ishikawa, S., 10.1090/S0002-9939-1974-0336469-5, Proc. Amer. Math. Soc. 44 (1974), 147–150. (1974) Zbl0286.47036MR0336469DOI10.1090/S0002-9939-1974-0336469-5
  7. Kannan, R., Some results on fixed points, Bull. Calcutta Math. Soc. 10 (1968), 71–76. (1968) Zbl0209.27104MR0257837
  8. Kannan, R., Some results on fixed points III, Fund. Math. 70 (1971), 169–177. (1971) Zbl0246.47065MR0283649
  9. Kannan, R., 10.1016/0022-247X(73)90218-7, J. Math. Anal. Appl. 41 (1973), 430–438. (1973) MR0320837DOI10.1016/0022-247X(73)90218-7
  10. Liu, L. S., 10.1006/jmaa.1995.1289, J. Math. Anal. Appl. 194, 1 (1995), 114–125. (1995) Zbl0872.47031MR1353071DOI10.1006/jmaa.1995.1289
  11. Mann, W. R., 10.1090/S0002-9939-1953-0054846-3, Proc. Amer. Math. Soc. 4 (1953), 506–510. (1953) MR0054846DOI10.1090/S0002-9939-1953-0054846-3
  12. Osilike, M. O., Short proofs of stability results for fixed point iteration procedures for a class of contractive-type mappings, Indian J. Pure Appl. Math. 20, 12 (1999), 1229–1234. (1999) Zbl0955.47038MR1729212
  13. Osilike, M. O., Stability results for fixed point iteration procedures, J. Nigerian Math. Soc. 14/15 (1995/96), 17–29. (1995) MR1775011
  14. Rafiq, A., Common fixed points of quasi-contractive-operators, General Mathematics 16, 2 (2008), 49–58. (2008) Zbl1235.47073MR2439234
  15. Rhoades, B. E., 10.1090/S0002-9947-1974-0348565-1, Trans. Amer. Math. Soc. 196 (1974), 161–176. (1974) Zbl0267.47032MR0348565DOI10.1090/S0002-9947-1974-0348565-1
  16. Rhoades, B. E., 10.1016/0022-247X(76)90038-X, J. Math. Anal. Appl. 50, 2 (1976), 741–750. (1976) MR0430880DOI10.1016/0022-247X(76)90038-X
  17. Rhoades, B. E., 10.1090/S0002-9947-1977-0433430-4, Trans. Amer. Math. Soc. 226 (1977), 257–290. (1977) Zbl0365.54023MR0433430DOI10.1090/S0002-9947-1977-0433430-4
  18. Rus, I. A., Generalized Contractions and Applications, Cluj University Press, Cluj-Napoca, 2001. (2001) Zbl0968.54029MR1947742
  19. Rus, I. A., Petrusel, A., Petrusel, G., Fixed Point Theory: 1950-2000, Romanian Contributions, House of the Book of Science, Cluj-Napoca, 2002. (2002) Zbl1005.54037MR1947195
  20. Takahashi, W., 10.1016/S0453-4514(00)88753-0, J. Oper. Res. Soc. Jpn. 43, 1 (2000), 87–108. (2000) Zbl1004.65069MR1768388DOI10.1016/S0453-4514(00)88753-0
  21. Takahashi, W., Tamura, T., Convergence theorems for a pair of nonexpansive mappings, J. Convex Analysis 5, 1 (1995), 45–58. (1995) MR1649417
  22. Xu, Y., 10.1006/jmaa.1998.5987, J. Math. Anal. Appl. 224 (1998), 91–101. (1998) DOI10.1006/jmaa.1998.5987
  23. Zamfirescu, T., 10.1007/BF01304884, Arch. Math. (Basel) 23 (1972), 292–298. (1972) Zbl0239.54030MR0310859DOI10.1007/BF01304884
  24. Zeidler, E., Nonlinear Functional Analysis and its Applications, I, Fixed Point Theorems, Springer, New York, 1986. (1986) Zbl0583.47050MR0816732

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.