Stability of Noor Iteration for a General Class of Functions in Banach Spaces

Alfred Olufemi Bosede

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2012)

  • Volume: 51, Issue: 2, page 19-25
  • ISSN: 0231-9721

Abstract

top
In this paper, we prove the stability of Noor iteration considered in Banach spaces by employing the notion of a general class of functions introduced by Bosede and Rhoades [6]. We also establish similar result on Ishikawa iteration as a special case. Our results improve and unify some of the known stability results in literature.

How to cite

top

Bosede, Alfred Olufemi. "Stability of Noor Iteration for a General Class of Functions in Banach Spaces." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 51.2 (2012): 19-25. <http://eudml.org/doc/246937>.

@article{Bosede2012,
abstract = {In this paper, we prove the stability of Noor iteration considered in Banach spaces by employing the notion of a general class of functions introduced by Bosede and Rhoades [6]. We also establish similar result on Ishikawa iteration as a special case. Our results improve and unify some of the known stability results in literature.},
author = {Bosede, Alfred Olufemi},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {stability; Noor and Ishikawa iterations; stability; Noor and Ishikawa iterations},
language = {eng},
number = {2},
pages = {19-25},
publisher = {Palacký University Olomouc},
title = {Stability of Noor Iteration for a General Class of Functions in Banach Spaces},
url = {http://eudml.org/doc/246937},
volume = {51},
year = {2012},
}

TY - JOUR
AU - Bosede, Alfred Olufemi
TI - Stability of Noor Iteration for a General Class of Functions in Banach Spaces
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2012
PB - Palacký University Olomouc
VL - 51
IS - 2
SP - 19
EP - 25
AB - In this paper, we prove the stability of Noor iteration considered in Banach spaces by employing the notion of a general class of functions introduced by Bosede and Rhoades [6]. We also establish similar result on Ishikawa iteration as a special case. Our results improve and unify some of the known stability results in literature.
LA - eng
KW - stability; Noor and Ishikawa iterations; stability; Noor and Ishikawa iterations
UR - http://eudml.org/doc/246937
ER -

References

top
  1. Agarwal, R. P., Meehan, M., O’Regan, D., Fixed Point Theory and Applications, Cambridge University Press, Cambridge, 2001. (2001) Zbl0960.54027MR1825411
  2. Berinde, V., Iterative Approximation of Fixed Points, Editura Efemeride, Baia Mare, 2002. (2002) Zbl1036.47037MR1995230
  3. Bosede, A. O., Noor iterations associated with Zamfirescu mappings in uniformly convex Banach spaces, Fasciculi Mathematici 42 (2009), 29–38. (2009) Zbl1178.47042MR2573523
  4. Bosede, A. O., Some common fixed point theorems in normed linear spaces, Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 49, 1 (2010), 19–26. (2010) MR2797519
  5. Bosede, A. O., Strong convergence results for the Jungck–Ishikawa and Jungck-Mann iteration processes, Bulletin of Mathematical Analysis and Applications 2, 3 (2010), 65–73. (2010) MR2718198
  6. Bosede, A. O., Rhoades, B. E., Stability of Picard and Mann iterations for a general class of functions, Journal of Advanced Mathematical Studies 3, 2 (2010), 23–25. (2010) MR2722440
  7. Bosede, A. O., Akinbo, G., Some stability theorems associated with A -distance and E -distance in uniform spaces, Acta Universitatis Apulensis 26 (2011), 121–128. (2011) Zbl1274.54117MR2850603
  8. Ciric, L. B., Fixed point theorems in Banach spaces, Publ. Inst. Math. (Beograd) 47, 61 (1990), 85–87. (1990) Zbl0722.47046MR1103533
  9. Ciric, L. B., Fixed Point Theory. Contraction Mapping Principle, FME Press, Beograd, 2003. (2003) 
  10. Harder, A. M., Hicks, T. L., Stability results for fixed point iteration procedures, Math. Japonica 33 (1988), 693–706. (1988) Zbl0655.47045MR0972379
  11. Imoru, C. O., Akinbo, G., Bosede, A. O., On the fixed points for weak compatible type and parametrically ϕ ( ϵ , δ ; a ) -contraction mappings, Math. Sci. Res. Journal 10, 10 (2006), 259–267. (2006) MR2277967
  12. Imoru, C. O., Olatinwo, M. O., On the stability of Picard and Mann iteration processes, Carpathian J. Math. 19, 2 (2003), 155–160. (2003) Zbl1086.47512MR2069844
  13. Imoru, C. O., Olatinwo, M. O., Akinbo, G., Bosede, A. O., On a version of the Banach’s fixed point theorem, General Mathematics 16, 1 (2008), 25–32. (2008) Zbl1235.54038MR2438519
  14. Ishikawa, S., 10.1090/S0002-9939-1974-0336469-5, Proc. Amer. Math. Soc. 44 (1974), 147–150. (1974) Zbl0286.47036MR0336469DOI10.1090/S0002-9939-1974-0336469-5
  15. Mann, W. R., 10.1090/S0002-9939-1953-0054846-3, Proc. Amer. Math. Soc. 4 (1953), 506–510. (1953) MR0054846DOI10.1090/S0002-9939-1953-0054846-3
  16. Noor, M. A., 10.1016/0893-9659(88)90054-7, Appl. Math. Letters 1 (1988), 119–121. (1988) Zbl0655.49005MR0953368DOI10.1016/0893-9659(88)90054-7
  17. Noor, M. A., 10.1006/jmaa.2000.7042, J. Math. Anal. Appl. 251 (2000), 217–299. (2000) MR1790406DOI10.1006/jmaa.2000.7042
  18. Noor, M. A., Some new developments in general variational inequalities, Appl. Math. Computation 152 (2004), 199–277. (2004) MR2050063
  19. Noor, M. A., Noor, K. I., Rassias, T. M., Some aspects of variational inequalities, J. Comput. Appl. Math. 47 (1993), 493–512. (1993) Zbl0788.65074MR1251844
  20. Osilike, M. O., Stability results for fixed point iteration procedures, J. Nigerian Math. Soc. 14/15 (1995/1996), 17–29. (1996) MR1775011
  21. Rhoades, B. E., 10.1090/S0002-9947-1974-0348565-1, Trans. Amer. Math. Soc. 196 (1974), 161–176. (1974) Zbl0267.47032MR0348565DOI10.1090/S0002-9947-1974-0348565-1
  22. Rhoades, B. E., 10.1016/0022-247X(76)90038-X, J. Math. Anal. Appl. 56, 2 (1976), 741–750. (1976) Zbl0353.47029MR0430880DOI10.1016/0022-247X(76)90038-X
  23. Rhoades, B. E., Fixed point theorems and stability results for fixed point iteration procedures, Indian J. Pure Appl. Math. 21, 1 (1990), 1–9. (1990) Zbl0692.54027MR1048010
  24. Rus, I. A., Petrusel, A., Petrusel, G., Fixed Point Theory, 1950–2000, Romanian Contributions, House of the Book of Science, Cluj-Napoca, 2002. (2002) Zbl1005.54037MR1947195
  25. Zamfirescu, T., 10.1007/BF01304884, Arch. Math. 23 (1972), 292–298. (1972) Zbl0239.54030MR0310859DOI10.1007/BF01304884
  26. Zeidler, E., Nonlinear Functional Analysis and its Applications: Fixed Point Theorems, Springer, New York, 1986. (1986) MR0816732

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.