Estimate of the Hausdorff measure of the singular set of a solution for a semi-linear elliptic equation associated with superconductivity
Archivum Mathematicum (2010)
- Volume: 046, Issue: 3, page 185-201
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topAramaki, Junichi. "Estimate of the Hausdorff measure of the singular set of a solution for a semi-linear elliptic equation associated with superconductivity." Archivum Mathematicum 046.3 (2010): 185-201. <http://eudml.org/doc/116482>.
@article{Aramaki2010,
abstract = {We study the boundedness of the Hausdorff measure of the singular set of any solution for a semi-linear elliptic equation in general dimensional Euclidean space $\{\mathbb \{R\}\}^n$. In our previous paper, we have clarified the structures of the nodal set and singular set of a solution for the semi-linear elliptic equation. In particular, we showed that the singular set is $(n-2)$-rectifiable. In this paper, we shall show that under some additive smoothness assumptions, the $(n-2) $-dimensional Hausdorff measure of singular set of any solution is locally finite.},
author = {Aramaki, Junichi},
journal = {Archivum Mathematicum},
keywords = {singular set; semi-linear elliptic equation; Ginzburg-Landau system; singular set; semi-linear elliptic equation; Ginzburg-Landau system},
language = {eng},
number = {3},
pages = {185-201},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Estimate of the Hausdorff measure of the singular set of a solution for a semi-linear elliptic equation associated with superconductivity},
url = {http://eudml.org/doc/116482},
volume = {046},
year = {2010},
}
TY - JOUR
AU - Aramaki, Junichi
TI - Estimate of the Hausdorff measure of the singular set of a solution for a semi-linear elliptic equation associated with superconductivity
JO - Archivum Mathematicum
PY - 2010
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 046
IS - 3
SP - 185
EP - 201
AB - We study the boundedness of the Hausdorff measure of the singular set of any solution for a semi-linear elliptic equation in general dimensional Euclidean space ${\mathbb {R}}^n$. In our previous paper, we have clarified the structures of the nodal set and singular set of a solution for the semi-linear elliptic equation. In particular, we showed that the singular set is $(n-2)$-rectifiable. In this paper, we shall show that under some additive smoothness assumptions, the $(n-2) $-dimensional Hausdorff measure of singular set of any solution is locally finite.
LA - eng
KW - singular set; semi-linear elliptic equation; Ginzburg-Landau system; singular set; semi-linear elliptic equation; Ginzburg-Landau system
UR - http://eudml.org/doc/116482
ER -
References
top- Aramaki, J., On an elliptic model with general nonlinearity associated with superconductivity, Int. J. Differ. Equ. Appl. 10 (4) (2006), 449–466. (2006) MR2321824
- Aramaki, J., On an elliptic problem with general nonlinearity associated with superheating field in the theory of superconductivity, Int. J. Pure Appl. Math. 28 (1) (2006), 125–148. (2006) Zbl1112.82053MR2227157
- Aramaki, J., A remark on a semi-linear elliptic problem with the de Gennes boundary condition associated with superconductivity, Int. J. Pure Appl. Math. 50 (1) (2008), 97–110. (2008) MR2478221
- Aramaki, J., Nodal sets and singular sets of solutions for semi-linear elliptic equations associated with superconductivity, Far East J. Math. Sci. 38 (2) (2010), 137–179. (2010) Zbl1195.82103MR2662062
- Aramaki, J., Nurmuhammad, A., Tomioka, S., A note on a semi-linear elliptic problem with the de Gennes boundary condition associated with superconductivity, Far East J. Math. Sci. 32 (2) (2009), 153–167. (2009) Zbl1171.82020MR2522753
- Aronszajn, N., A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of second order, J. Math. Pures Appl. (9) 36 (1957), 235–249. (1957) Zbl0084.30402MR0092067
- Elliot, C. M., Matano, H., Tang, Q., Zeros of a complex Ginzburg-Landau order parameter with applications to superconductivity, European J. Appl. Math. 5 (1994), 431–448. (1994) MR1309733
- Federer, H., Geometric Measure Theory, Springer, Berlin, 1969. (1969) Zbl0176.00801MR0257325
- Garofalo, N., Lin, F.-H., 10.1512/iumj.1986.35.35015, Indiana Univ. Math. J. 35 (2) (1986), 245–268. (1986) MR0833393DOI10.1512/iumj.1986.35.35015
- Gilbarg, D., Trudinger, N. S., Elliptic Partial Differential Equations of Second Order, Springer, New York, 1983. (1983) Zbl0562.35001MR0737190
- Han, Q., 10.1512/iumj.1994.43.43043, Indiana Univ. Math. J. 43 (1994), 983–1002. (1994) Zbl0817.35020MR1305956DOI10.1512/iumj.1994.43.43043
- Han, Q., 10.1007/BF02921945, J. Geom. Anal. 10 (3) (2000), 455–480. (2000) MR1794573DOI10.1007/BF02921945
- Han, Q., Hardt, R., Lin, F.-G., 10.1002/(SICI)1097-0312(199811/12)51:11/12<1425::AID-CPA8>3.0.CO;2-3, Comm. Pure Appl. Math. 51 (1998), 1425–1443. (1998) Zbl0940.35065MR1639155DOI10.1002/(SICI)1097-0312(199811/12)51:11/12<1425::AID-CPA8>3.0.CO;2-3
- Hardt, R., Hoffmann-Ostenhof, M., Hoffmann-Ostenhof, T., Nadirashivili, N., Critical sets of solutions to elliptic equations, J. Differential Geom. 51 (1999), 359–373. (1999) MR1728303
- Helffer, B., Mohamed, A., 10.1006/jfan.1996.0056, J. Funct. Anal. 138 (1996), 40–81. (1996) Zbl0851.58046MR1391630DOI10.1006/jfan.1996.0056
- Helffer, B., Morame, A., 10.1006/jfan.2001.3773, J. Funct. Anal. 185 (2001), 604–680. (2001) Zbl1078.81023MR1856278DOI10.1006/jfan.2001.3773
- Lu, K., Pan, X.-B., 10.1016/S0167-2789(98)00246-2, Physica D 127 (1999), 73–104. (1999) MR1678383DOI10.1016/S0167-2789(98)00246-2
- Lu, K., Pan, X.-B., 10.1006/jdeq.2000.3892, J. Differential Equations 168 (2000), 386–452. (2000) MR1808455DOI10.1006/jdeq.2000.3892
- Mattila, P., Geometry of Sets and Measures in Euclidean Spaces, Cambridge Univ. Press, 1995. (1995) Zbl0819.28004MR1333890
- Morgan, F., Geometric Measure Theory, A beginner’s Guide, fourth ed., Academic Press, 2009. (2009) Zbl1179.49050MR2455580
- Pan, X.-B., 10.1007/s00220-003-0875-8, Comm. Math. Phys. 239 (2003), 343–382. (2003) Zbl1056.49005MR1997445DOI10.1007/s00220-003-0875-8
- Pan, X.-B., 10.1090/S0002-9947-04-03530-5, Trans. Amer. Math. Soc. 356 (2004), 3899–3937. (2004) Zbl1051.35090MR2058511DOI10.1090/S0002-9947-04-03530-5
- Pan, X.-B., 10.1063/1.2738752, J. Math. Phys. 48 (2007), 053521. (2007) MR2329883DOI10.1063/1.2738752
- Pan, X.-B., Kwek, K. H., 10.1006/jdeq.2001.4093, J. Differential Equations 182 (2002), 141–168. (2002) Zbl1064.35057MR1912073DOI10.1006/jdeq.2001.4093
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.